
AFRL-IF-WP-TR-2004-1517 
 

SECURITY/TRUST AS A 
POLYMORPHIC COMPUTING 
CONSTRAINT 
 
Clark Weissman, Brant Hashii, and Jerry Cole 
 
Northrop Grumman Corporation 
Integrated Systems, MS 9L74/W6 
One Hornet Way 
El Segundo, CA 90245-2804 
 
 
 
 
 
 
 
 

SEPTEMBER 2003 
 
 

Final Report for 14 May 2001 – 30 September 2003 
 
 
 

Approved for public release; distribution is unlimited. 

 
STINFO FINAL REPORT 

 
 
 
 
 
 
 

INFORMATION DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334 



NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL
ANY PATENTED INVENTION THAT MA Y RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE
GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

.-
I ..
!~ -~.4~ i?i

FELLI
- --- --- ,,' SCAK Team Leader

Embedded Info Systems Engineering Branch
Information Systems Technology Division

"
KERRY L. HILL
Project Engineer
Embedded Info Sys Engineering Branch
Information Systems Technology Division

~ ..I . .:;:J...I/~
JAMES S. WILLIAMSON, Chief
Embedded Info Systems Engineering Branch
Information Systems Technology Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a
specific document requires its return.



i 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis 
Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

September 2003 Final  05/14/2001 – 09/30/2003 
5a.  CONTRACT NUMBER 

F33615-01-C-1891 
5b.  GRANT NUMBER 

4.  TITLE AND SUBTITLE 

SECURITY/TRUST AS A POLYMORPHIC COMPUTING CONSTRAINT 

5c.  PROGRAM ELEMENT NUMBER 
62712E 

5d.  PROJECT NUMBER 

L454 
5e.  TASK NUMBER 

18 

6.  AUTHOR(S) 

Clark Weissman, Brant Hashii, and Jerry Cole 

5f.  WORK UNIT NUMBER 

  91 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 

  REPORT NUMBER 

Northrop Grumman Corporation 
Integrated Systems, MS 9L74/W6 
One Hornet Way 
El Segundo, CA 90245-2804 

 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING AGENCY 
ACRONYM(S) 

AFRL/IFTA Information Directorate 
Air Force Research Laboratory 
Air Force Materiel Command 
Wright-Patterson AFB, OH 45433-7334 

DARPA/IPTO 
3701 Fairfax Drive 
Arlington, VA 22203-1714 

11.  SPONSORING/MONITORING AGENCY 
REPORT NUMBER(S) 

       AFRL-IF-WP-TR-2004-1517 
12.  DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 
13.  SUPPLEMENTARY NOTES 

 
14.  ABSTRACT 

DoD Joint Vision 2020 (JV2020) is the integrated multi-service planning document for conduct among coalition forces of 
future warfare. It requires the confluence of a number of key avionics technical developments: integrating the network-
centric battlefield, management of hundred thousands of distributed processors, high assurance Multi Level Security 
(MLS) in the battlefield, and low cost high assurance engineering. The paper describes the results of a study and modeling 
of a new security architecture (MLS-PCA) that yields a practical solution for JV2020 based upon DARPA Polymorphic 
Computing Architecture (PCA) advances and a new distributed process-level encryption scheme. The paper defines a 
functional model and a verified formal specification of MLS-PCA, for high assurance, with the constraints PCA software, 
hardware, and morphware must support. Also, the paper shows a viable mapping of the MLS-PCA model to the PCA 
hardware. MLS-PCA is designed to support upwards of 400,000 CPUs predicted by Moore’s law to be available circa 
2020. 

15.  SUBJECT TERMS 
Multi Level Security (MLS), Polymorphic Computer Architecture (PCA), High assurance network security via process-
level encryption, DoD Joint Vision 2020 (JV2020), Formal modeling and formal specification, Trusted avionics 
architecture for hundreds of thousands of processors predicted by 2020 by Moore’s Law 

16.  SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON (Monitor) 

a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

17. LIMITATION  
OF ABSTRACT: 

SAR 

18.  NUMBER 
OF PAGES 

    56 
         Kerry Hill 
19b.  TELEPHONE NUMBER (Include Area Code) 

(937) 255-6548 x3604 
 Standard Form 298 (Rev. 8-98)        

Prescribed by ANSI Std. Z39-18 

 



iii 

TABLE OF CONTENTS 
 
1 INTRODUCTIONS AND MOTIVATION................................................................ 1 
2 BACKGROUND ........................................................................................................ 2 

2.1 Character of Avionics ......................................................................................... 2 
2.2 Joint Vision 2020 – System High Won’t Work.................................................. 2 
2.3 MLS Problem...................................................................................................... 3 
2.4 Moore’s Law Predicts a Wealth of Processors ................................................... 4 
2.5 MLS-PCA Characteristics .................................................................................. 4 

3 MLS-PCA FUNCTIONAL MODEL ......................................................................... 5 
3.1 Avionics Application Process, AAP................................................................... 5 
3.2 Encryption Processing Element, EPE................................................................. 6 
3.3 Network Security Element, NSE ........................................................................ 7 
3.4 Security Policy Enforced by Encryption............................................................. 7 
3.5 Special Crypto Issues.......................................................................................... 9 
3.6 Initialize and Bootstrap of MLS-PCA ................................................................ 9 

3.6.1 Assumptions.............................................................................................. 10 
3.6.2 EPE-NSE Initialization Protocol .............................................................. 10 

4 MLS-PCA FORMAL MODEL ................................................................................ 11 
4.1 Formal Methods ................................................................................................ 12 
4.2 Alloy ................................................................................................................. 12 

4.2.1 Choosing Alloy ......................................................................................... 12 
4.2.2 Language features ..................................................................................... 13 
4.2.3 Alloy Analyzer.......................................................................................... 14 
4.2.4 Translation to Alloy 2 ............................................................................... 14 

4.3 Model Description ............................................................................................ 14 
4.3.1 Signatures.................................................................................................. 15 
4.3.2 Relations ................................................................................................... 15 
4.3.3 Operations ................................................................................................. 15 
4.3.4 Invariants .................................................................................................. 16 
4.3.5 Predicates and Facts.................................................................................. 17 
4.3.6 Alloy Example .......................................................................................... 17 

4.4 Formal Constraints............................................................................................ 22 
4.4.1 State variables ........................................................................................... 23 
4.4.2 Facts .......................................................................................................... 23 
4.4.3 Transforms ................................................................................................ 23 
4.4.4 Invariants .................................................................................................. 23 

4.5 Influence on Design of Formal Methodology................................................... 24 
4.5.1 Focused Design......................................................................................... 24 
4.5.2 Design Error.............................................................................................. 25 
4.5.3 Error Found Via Automated Analysis ...................................................... 25 
4.5.4 Design Simplifications.............................................................................. 26 

4.6 Experiences Using Alloy .................................................................................. 27 
4.6.1 State Space Size ........................................................................................ 27 
4.6.2 Revocation Synchronization ..................................................................... 28 
4.6.3 State Diagrams.......................................................................................... 29 



iv 

4.6.4 Experiences During Implementation ........................................................ 29 
5 MLS-PCA MODEL MAPPING TO PCA HARDWARE........................................ 30 

5.1 A Generic PCA Chip Architecture ................................................................... 31 
5.2 Related Technologies........................................................................................ 33 
5.3 Elements of the MLS-PCA Model and Their Mapping to PCA....................... 36 

5.3.1 Analysis of the Specific Element Mappings............................................. 36 
5.3.2 Required constraints to achieve MLS....................................................... 38 
5.3.3 Specific mapping to Smart Memories and Raw PCA chips ..................... 38 
5.3.4 Assumptions.............................................................................................. 39 

5.4 A Summary of Current PCA Limitations for MLS Avionics ........................... 39 
6 CONCLUSION......................................................................................................... 40 
7 ACKNOWLEDGMENTS ........................................................................................ 41 
8 REFERENCES ......................................................................................................... 41 
9 ACRONYMS............................................................................................................ 45 
 
 
LIST OF FIGURES 
 
Figure 2.5  MLS-PCA Architecture Overview .......................................................... 5 
Figure 3.6  EPE Initialization Protocol .................................................................... 11 
Figure 4.3.3  Open Protocol ........................................................................................ 16 
Figure 4.3.6-1  Initial State of Counterexample ............................................................. 20 
Figure 4.3.6-2  Resulting State of Counterexample ....................................................... 20 
Figure 4.3.6-3  Initial State After Correction ................................................................. 21 
Figure 4.3.6-4  Resulting State After Correction............................................................ 21 
Figure 4.5.3  Fate Sharing ........................................................................................... 26 
Figure 5.1  Fundamental MLS-PCA Eight-Tile Region Building Block................. 31 
 
 
LIST OF TABLES 
 
Table 4.3  MLS-PCA Formal Specification Characteristics.......................................... 15 
Table 4.4  Formal Constraints........................................................................................ 23 



1 

 
 
1 INTRODUCTIONS AND MOTIVATION 

 
DOD Joint Vision 2020 describes the future battle space consisting of space, air, land, 
sea, and undersea forces integrated via a global network of sensors, command and 
control, communications, and integrated strike warfare elements [JV2020]. The Achilles 
heel of this network-centric vision is the high assurance Multi Level Security (MLS) that 
permits the myriad communications that make JV2020 possible. MLS research and 
development over the past two decades has defined the requirements that must be 
satisfied for DOD systems [Anderson, TCSEC, CC99, Rainbow]. However, the high cost 
of developing and certifying high assurance systems to these requirements has been 
prohibitive and development time has been excessively long. Innovative use of 
Polymorphous Computing Architecture (PCA) to satisfy these MLS requirements in a 
scheme at process-level granularity is a novel R&D approach that simplifies system 
design, yet provides flexible configurable MLS systems. Such systems can meet security 
requirements to support different secure data streams in battlefield network-centric 
computing, as advocated in Joint Vision 2020. Many additional security requirements can 
be satisfied concurrently, including message integrity, authentication, confidentiality, 
code mobility, and dynamic coalitions. This paper describes a new security architecture 
to employ the richness of processing logic expected by 2020, such as the DARPA 
Polymorphic Computing Architecture (PCA) program [PCA].  
 
The PCA goals are to span a broad dynamic application space by implementing a 
transparent reactive layer between an embedded avionics application program and the 
malleable micro-architecture elements on which it will operate. This polymorphic layer 
will enable software and hardware to be developed in a cooperative constraint sensitive 
environment instead of in a failure prone hardware first and software last paradigm. The 
PCA program will implement a family of novel malleable micro-architecture processing 
elements, i.e., PCA chips, to include compute cores, caches, memory structures, data 
paths, network interfaces, network fabrics with incremental instructions, OS, and network 
protocols. These elements will have the ability to reconfigure to match changing mission 
and scenario demands. To support the use of polymorphous computing systems, the 
program will create a model based software framework for reactive monitoring, 
optimization, modeling, resource negotiation and allocation, regeneration, and 
verification. 
 
Our new security architecture, MLS-PCA, is the focus of this report, which covers the 
novel functional architecture, a formal specification model, and an examination of the 
security constraints that must be imposed on the PCA software-morphing layer and on 
the underlying chip hardware. We determined a set of security constraints that must be 
imposed on the PCA hardware to allow PCA to achieve certifiably secure MLS avionics 
processing. These are not PCA constraints, or deficiencies in the polymorphous 
computing architecture, or limitations on the morphware compiler tools. They are 
security constraints to restrict the PCA flexibility sufficiently to permit security 
certification of the resulting MLS-PCA-based avionics systems.  



2 

 
 
 
 
 
2 BACKGROUND 
 
2.1 Character of Avionics 
 
Legacy military avionics systems were developed using a “federated architecture” in 
which each subsystem was logically and physically separate.  Each had its own set of 
component parts, which could not be used to support other subsystems in times of 
equipment failure. This was the approach taken with the F-15, F-16 and F/A-18, in the 
1970s. In the early 1980s, the Department of Defense put together the “Pave Pillar” 
architecture that led to the Joint Integrated Avionics Working Group (JIAWG) Advanced 
Avionics Architecture.  The result of this integrated avionics architecture was that 
computational resources could be interconnected by high speed networks to allow for 
more flexible usage of these resources, e.g., re-assigning a processor to take over the 
function of a failed processor.  PCA is the next step in Pave Pillar integrated avionics 
architecture with the multiple processors, memory, and connecting busses all contained 
on a single chip. This also led to the ability to share information, e.g., to utilize fusion 
methods to merge radar and electro-optical information to create an improved way to 
convey information to the pilot.  The pilot no longer had to mentally perform the 
integration function from a variety of gauges and instruments. Unfortunately, the sharing 
of information resources in a classified avionics environment leads to another challenge; 
either 1) operate at “System High”, with a labor intensive burden of separating out the 
different classification levels at the end of a mission, or 2) solve the MLS problem.  The 
combination of highly classified data along with un-cleared (or lowly cleared) 
maintainers led to a major Information Assurance nightmare.  Methods currently do not 
exist to provide high assurance separation of the different security levels from System 
High systems.  
 
Future avionics systems will consist of a large number of processors interconnected by 
LANs, fiber channels, and local buses. Avionics application software – navigation, flight 
controls, communication, displays, targeting, and weapons control – will operate in a 
distributed manner, with processes spread across thousands of processors. Humans will 
play a variety of roles in this environment including pilot, navigator, ground controller, 
ground support, and mission planner. There is also a trend toward autonomous vehicles, 
where there is no authority to supervise security decisions. The growing need to use 
multilevel systems in coalition environments makes this a “show-stopper” issue!   
 
2.2 Joint Vision 2020 – System High Won’t Work  
 
Economics of general purpose computing has forced a tradition of developing software to 
share the processor resources. Operating systems, memory management, stack 
management, context switching, and interrupt vectoring are some examples of such 
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sharing mechanisms. When avionics applications process different security levels of 
information, these sharing mechanisms must be trusted not to leak classified information 
between the processes. Trusted software is costly to develop, complex to design, poor 
performing, and it is difficult to certify its trustworthiness. As a result, most avionics 
systems avoid trusted development by operating at “System High,” the highest 
classification of any data entering the system. In the future world of the integrated 
battlefield, System High is not an acceptable solution. Weapon systems, sensors, and 
people will create multiple secure data streams at different security sensitivities, which 
must be managed in a MLS manner to permit battlefield flexibility of application of those 
assets, and not over-classify information to System High.  We simply cannot clear all 
battlefield personnel to System High. High assurance MLS is a necessary requirement 
because of the hostile battle space environment consisting of data as high as Top Secret 
with multiple compartments serving friendly forces that will include uncleared, foreign 
coalition partners, Red Cross, and humanitarian personnel; the worst case threat 
environment by current standards [CSC003, CSC004]. 
 
2.3 MLS Problem 
 
Simply stated, there are few Commercial Off The Shelf (COTS) solutions to satisfy the 
high assurance MLS requirements. The traditional alternative is to scratch build a high 
assurance trusted MLS system. That alternative is not attractive because 1) the avionics 
requirements are quite broad to meet all needs of the JV2020 battle space, 2) Certification 
and Accreditation (C&A) in DOD is in some disarray, with many competing approaches 
[DODD 8500.1& DODI 8500.2, NISPOM, DCID 6/3, DITSCAP, NIAP], 3) obtaining 
C&A is a lengthy process that may not complete by time of need, 4) systems may not 
satisfy real-time avionics needs, and 5) traditional MLS approaches are too expensive. A 
new approach is needed. 
 
In July 1990, the National Security Telecommunications and Information Systems 
Security Committee (NSTISSC) was established for the purpose of developing and 
promulgating national policies applicable to the security of national security 
telecommunications and information systems. In January 2000, NSTISSC issued Policy 
No. 11, which addresses the national policy governing the acquisition of information 
assurance and information assurance-enabled information technology products. Policy 
No.11 states that information assurance shall be considered as a requirement for all 
systems used to enter, process, store, display, or transmit national security information. 
DOD has issued DOD Directive 8500.1, Information Assurance, and DOD Instruction 
8500.2, Information Assurance Implementation, to implement Policy No. 11 [NSTISSC, 
DODD8500, DODI8500]. 
 
NSA and the Air Force have touted a trusted Protection Kernel (PK) as a candidate 
approach. They are supporting the development of a Common Criteria Protection Profile; 
a first step toward C&A [PKPP].  PK divides a processor into isolated domains with 
controlled inter-domain communication. A different security-level process can run in 
each partition. There is prior research encouraging this approach. COTS PKs available 
have weak security trust, and have never been applied to secure avionics application. 
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2.4 Moore’s Law Predicts a Wealth of Processors 

 
A modern aircraft today has over 1000 computers on board, and many more on the 
ground in support of the vehicle’s mission.  These are packaged into discrete systems 
with shared power systems, interconnect busses, and external communications. The 
computers perform flight control management, navigation, stores management, sensor 
processing, targeting, weapons control, communications processing, and display 
processing. Collectively, the high-level language software for these functions is multiple 
millions of source lines of code (SLOC), and rising with new developments. 
 
For the past 30 years, computer hardware logic per chip has been growing exponentially, 
doubling every 18 months. First formulated as Moore’s Law, the forecast in 2002 is for 
the exponential growth to continue with 12 logic doublings by 2020 (212  = 4,000 X), our 
target timeframe [Moore]. The security challenge will be to build a high assurance MLS 
system from the expected array of 400,000 processors. We will be in an era of logic – 
processor/memory – richness. This paper proposes one way to securely organize and 
employ this computational richness.  
 
2.5 MLS-PCA Characteristics 
Dedicate a Process (Subject) to a Processor – Processor- 
Key to avionics security is creating dynamic trusted connections between processes, not 
between processors as was achieved in the Defense Data Net (DDN) [BLACKER] and is 
typical with today’s network Virtual Private Network (VPN) architecture.  Cryptography 
today is placed at the junction of processors – host, router, server, firewall, and gateway – 
or within the processor with unknown quality encryption software, or as software 
mediated cryptographic chips. Alas the rub, all these approaches place the security base 
on untrusted software intermediaries. 
 
Future computing will have processor- and memory-rich avionics designed as distributed 
processes in a plexus of processors interconnected by networks. Our approach is to move 
encryption to the process level to create trusted application connections with unique 
trusted cryptographic elements. The operative components of the architecture are an 
Encryption Process Element (EPE) interposed between an Avionics Application Process 
(AAP) and the communication channel. A Network Security Element (NSE) will control 
the Inter Process Communication (IPC) via distribution of encryption and authentication 
keys to the EPEs.  
 
MLS-PCA implemented in a conventional network, would have an AAP hosted on its 
own processor. There is no need to share the processor and its resources with another 
AAP. There is no need for a complex resource manager or Operating System. A simple 
network protocol stack and loader is sufficient. Domains and domain management, e.g., 
context saving, context switching, are unnecessary. Memory management and sharing are 
eliminated as well as process scheduling. The absence of these features permits simpler 
hardware and CPU architecture, and the dedication of each processor to a single security 
level, that of its loaded AAP process. The elimination of processor and memory sharing 
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is generally not typical for PCA chips.  Chapter 5 of this report defines for the MLS-PCA 
model a Region of the 64 CPU PCA chip. The chip is divided into eight Regions. Each 
Region shares eight processors and/or memory cells; two for the EPE and six for the 
AAP.  Within a Region processor and memory sharing is required.  Each Region operates 
at the single security level of its loaded AAP such that there can be up to eight different 
security Regions – MLS -- sharing one PCA chip. However, between the eight AAP 
Regions of a 64 CPU PCA chip, there is no processor or memory sharing.   
 
A small example of a MLS-PCA secure network is shown in Figure 2.5.  Note the pairing 
of each AAP-EPE, including the NSE-EPE pair. 
 

 
Figure 2.5: MLS-PCA Architecture Overview 

 
3 MLS-PCA FUNCTIONAL MODEL 

 
Avionics components are usually well defined by the mission and include air vehicle 
controls, navigation, e.g., Global Positioning System (GPS), inertial, targeting, sensor 
(e.g., Infrared, radar), weapons control, payload stores, communications, safety, and other 
systems. Ground support functions include maintenance and logistics, mission planning, 
mission analysis, and training among others. These support functions affect the avionics 
configuration. Mission planning determines flight plan, weapons, radio frequencies, 
crypto keys, weather, targets, etc. Plans so formulated are embodied in software programs 
and databases that are dynamically loaded into the air vehicle just before takeoff by some 
Portable Memory Device (PMD) carried by the pilot or crew.  
 
3.1 Avionics Application Process, AAP 
 
The avionics development includes infrastructure components – processors, busses, 
communications devices, etc. – under control of the appropriate application software 
processes. We define these as Avionics Application Processes, AAPs. Traditionally, 
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AAPs are integrated into one large system operating at the system high classification of 
the vehicle, e.g., Top Secret Special Access Required (TS-SAR). MLS-PCA will require 
different thinking on the part of avionics developers. Functions will be classified 
individually at the single level of the highest data processed, often less than system high. 
Thus AAPs are the untrusted “subjects” of Bell-LaPadula [Bell], and will be at a variety 
of security levels, mostly Unclassified or Secret. Mission planning will select the required 
software for the mission, and construct a table – the access matrix – of the AAPs, which 
will specify their security levels, the data and devices, i.e., the “objects,” they can access, 
and the type of access permitted, i.e., their read, write, append, and execute permissions.  
Furthermore, mission planning will define the avionics system configuration of network 
addresses, process ids, authenticators, and initial cryptographic keys. This classified data 
is protected from theft, unauthorized modification, and disclosure by encrypting the PMD 
for its journey from the classified mission-planning center to the classified air vehicle and 
back again after the mission with mission results. 
  
An AAP is considered a homogenous process at a single security level. In reality, it may 
be many processes, but packaged for MLS-PCA as a single process. For real-time 
systems, an AAP traditionally is scheduled to run at a precise time interval by an event 
trigger, or by a call from another AAP. For MLS-PCA, the AAP will own its processor 
exclusively and need not be scheduled. It will always run (or be quiescent to save power), 
but only produce results when events dictate. When necessary, an AAP will interact with 
another authorized  (by the access matrix) AAP. MLS-PCA will establish a 
cryptographically “trusted connection” between the two AAPs.  Multiple AAPs can share 
a trusted connection as part of a “coalition.” AAP trusted connections could last the entire 
mission, and often will in the well-defined world of avionics. Finally, the trusted 
connection can extend beyond the boundary of the avionics “box,” or the air vehicle 
when properly configured. The trusted connection is only limited by the communications 
and imagination of the system developer. 
 
3.2 Encryption Processing Element, EPE 

 
Each AAP will be protected by an “attached” front-end guard element, the EPE. The EPE 
guards the attached process by performing message encryption/decryption of all IPC 
traffic. There is no bypass of the EPE. This is a security constraint on the architecture, the 
guarantee that a cryptographic computing element front ends each computational 
element. An EPE may be a software element or encryption hardware. There can be 
thousands of EPEs at any given time. An EPE does additional tasks related to protecting 
keys as a way of enforcing security policy. For example, all keys are distributed 
“wrapped,” i.e., encrypted. The EPE must unwrap keys to use them. The wrapper key 
must be distributed in an “out of band” procedure, possibly carried in a physical 
“ignition” key generated by mission planning, and inserted into an avionics port by the 
pilot, or built into each EPE processor’s nonvolatile memory by mission control. The 
choice is mission dictated and hardware configured. 
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In summary, each AAP has one EPE. The EPE is the only access between the AAP and 
the communications network and functions as a gateway to ensure that messages can be 
sent only to authorized recipients and that all messages are encrypted. 
 
3.3 Network Security Element, NSE 
 
The NSE distributes encryption keys to the EPEs, enforcing access control of 
communication paths, i.e., permissions between AAP pairs. The NSE is the security 
policy element for all internal and external communication, permitting the avionics 
interoperability with external battlefield assets. Within the control of the NSE is an access 
matrix of authorized permissions for each AAP. The permissions are stored as a database, 
with a unique key corresponding to each dimension of the security policy. For example, 
there can be a key for each security level and each compartment of the Mandatory Access 
Control (MAC) security lattice. There can be a common key for each user (uid) or 
process (pid) in a coalition, or a key for each AAP pair allowed to connect as part of 
Discretionary Access Control (DAC). There can be keys for each mission function, and 
there can be one-time session keys for each newly created trusted connection. NSE 
creates a trusted connection, by sending a session key to the attached EPEs. That session 
key is the XORed result of all the policy keys – the MAC, DAC, and other keys – for the 
connection based on the maximum authorized permission of the paired application 
processes. The NSE access matrix is authorized and established by mission planning and 
transported to the avionics system on a PMD at mission initiation. Dynamic updates are 
permitted by authorized roles in the mission, e.g., pilot, and/or ground control. 
 
At mission initialization, system required trusted connections are established between 
security infrastructure elements – NSE, EPE (cf. Section 5.6.2). They exist to allow the 
NSE to distribute keys securely to EPEs. Information regarding AAPs is required for 
setting the NSE access database at mission initialization. A human role is defined by 
associating a user (uid) with a process (pid) in the access control matrix. For each pid and 
uid there is a set of credentials that defines the security permissions, the coalitions, and 
the roles played by all entities. There is a need for Identification and Authorization (I&A) 
whenever connections are established. The NSE will perform the I&A task inasmuch as it 
already has the I&A data from mission planning. The NSE can be implemented as a set 
of distributed processes executing on multiple processors within the avionics architecture 
for redundancy and performance, similar to any of the avionics applications 
 
3.4 Security Policy Enforced by Encryption 

 
The enforcement mechanism of the MLS-PCA model is the allocation of an encryption 
key for the trusted connection between two AAPs – the session key, Ksession. The NSE 
computes the session key for each open request by an AAP to access another, based on 
the applicable security policy. Typically, there are multiple applicable policies – MAC, 
DAC, and Mission.  
 
MLS-PCA treats AAPs as untrusted subjects, and treats trusted connections (TCs) as the 
security objects. TCs are simplex (unidirectional), i.e., AAPi can write messages to AAPj 



8 

(who reads messages from the connection). If AAPj wishes to respond to AAPi, AAPj 
must open a separate simplex connection to AAPi. Dialogs between AAPs can be 
“duplex” by creating two simplex connections. Simplex connections allow blind write-
up, or Append, e.g., AAPi may write to AAPj, when the security level SLj > = SLi  
(dominates). 
 
Mandatory Access Control, MAC, is the classic DOD policy of a subject’s clearance 
dominating an object’s classification. This is best realized in the Bell-LaPadula [Bell] 
policy. MLS-PCA uses BLP and labels all subjects and objects. There is a MAC key, for 
each classification level, Ksl and each security compartment, Kcomp . 
 
Discretionary Access Control, DAC, further limits subject-object access. DAC is like a 
“wiring diagram” of mission functions (AAPs). DAC is conceptualized as a matrix of 
subjects vs. objects, with a matrix cell’s content containing the DAC encryption key, Kd. 
The DAC matrix is sparsely populated because the AAPs tend to cluster by function. For 
avionics purposes, a coalition is a collection of subjects who meet the requisite MAC 
requirements and are members of a community of interest of the MLS-PCA model. These 
subjects create a multi-party trusted connection by joining a coalition and leaving the 
coalition as necessary. MLS-PCA effects a coalition by treating coalitions as objects in 
the DAC matrix and creating a common key Kcoal used by all coalition subjects. For each 
subject in a coalition, its coalition key, Kcoal, is contained in the DAC matrix coalition 
cell. Thus, the DAC policy key Kdac is defined as: Kdac  = (Kd or Kcoal ), i.e., either the 
DAC key or the coalition key for a given object. 

 
The MLS-PCA model is applicable to a wide family of avionics applications in a 
dynamic battle space environment. Missions can cover surveillance, targeting, shooter, 
and communications. MLS-PCA takes the view that an avionics mission is composed of a 
set of AAPs that constitute the mission functionality. The mission can then be represented 
by the DAC policy above. For multi-mission scenarios we need another (3rd) dimension 
to the DAC matrix that shows the DAC connectivity for each mission, i.e., another layer 
in the DAC matrix. 
 
Overall then, the MLS-PCA security policy is reflected in the following: 
 

 Ksession  = Ksl  ⊗  Kcomp  ⊗ Kdac 
1

 ;                      
   where, Kdac = (Kd or Kcoal ) ⊗ Κmission     

and ⊗ is XOR 
 

This scheme provides great flexibility in MLS-PCA to match security policy to the needs 
of the avionics application. Most missions are static with fixed AAP communication 
patterns as one might find in an autonomous Unpopulated Air Vehicle (UAV).  In such a 
static environment, we might do away with the NSE and have access policy keys pre-
placed during initialization at the EPEs by mission control. 
 
                                                 
1 Added security can be achieved by applying a non-invertable function to Ksession to foil a rogue process 
impersonating an EPE from obtaining Ksession  and deducing the component keys. 
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3.5 Special Crypto Issues  
 

The MLS-PCA model is silent on how the encryption function is mechanized – in 
software or hardware. It is only concerned that it be correct, always invoked, and always 
bound to its AAP. It is the “reference monitor” for the architecture [Anderson]. 
 
The model is also silent on the encryption algorithm to be employed. We only assume it 
will have management features compatible with DOD Type I and Type II encryption, 
and commercial algorithms such as Triple Data Encryption Standard (DES), and the 
Advanced Encryption Standard (AES). Choice will be made at the time of specific 
application. We do specify a Public Key Infrastructure (PKI) scheme for secure key 
distribution during system boot (cf. Section 3.6). Key management is intimately tied to 
security policy as discussed in Section 3.4. 
 
Every secure system must have a means of revoking access upon discovering hostile, or 
runaway behavior of a subject. This means revoking a trusted connection immediately. 
Revocation is achieved by erasing the guilty AAP connection by “zeroizing” the session 
key for the connection, Ksession .2 Zeroizing is a command sent from the NSE to the EPE 
guarding the guilty AAP. Since the NSE and EPE are trusted processes the key erase 
action occurs near instantaneously breaking the AAP trusted connection. The AAP 
cannot thwart the zeroize action because it is not a party to the private infrastructure 
commands between the NSE and EPE. Also, unlike zeroize of traditional encryption 
boxes, the zeroize command can be acknowledged and states synchronized after action 
taken by the EPE, which has a separate trusted connection with the NSE. The model also 
uses zeroize of Kcoal at a specific EPE to remove a subject (i.e., AAP) from a coalition. 

 
3.6 Initialize and Bootstrap of MLS-PCA 
 
The NSE and the EPE is the Trusted Computing Base (TCB) for the MLS-PCA scheme. 
There are two possible implementation configurations for the MLS-PCA model to protect 
the TCB: the first has the EPE in hardware; second, has the EPE as a loadable software 
process. Our view of the first consideration is the EPE process is a hardware subroutine 
of the CPU chip, somewhat like floating point hardware. We are looking at the proposed 
PCA hardware chips for MIT’s Raw and Stanford’s Smart Memories for how the model 
maps into the hardware. Generally speaking the hardware configuration is an easier 
initialization implementation because most of the initial parameters are “wired” into the 
hardware, e.g., network addresses, or process logic. The unique hardware initialization 
issues are resource allocation considerations when there exist lots of CPUs, memory, and 
buses on a chip, i.e., a Raw chip has 16 CPUs; Smart Memories has 64 CPUs. The 
software EPE initialization issues are classical security and integrity issues, the harder 
solution of the two configurations.  
 
 

                                                 
2 “Zeroize” does not mean setting a key of all zeros. It means replacing a key with a random value not 
known  by any other EPE, thereby making encrypted text using the zeroized key undecipherable. 
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3.6.1 Assumptions 
 
For any given classified avionics environment, the classified data and applications 
(AAPs) will be created and configured in a classified and trusted ground-based support 
system, a Mission Planning Center (MPC).  The MPC is an MLS trusted facility that 
plans the mission, assembles the avionics mission software AAPs from trusted 
configuration files, and defines the mission configuration parameters (i.e., AAPs, NSE, 
EPEs, flight plan, radio frequencies, encryption keys, security levels of AAPs, weapons 
and fuel stores, and other items). The mission vehicle information systems will contain 
only unclassified data when “parked,” be it an aircraft, UAV, or ship. The mission 
configuration parameters will be written to a PMD to be loaded into the vehicle just prior 
to the mission. The PMD will be encrypted to protect the pre- and post-mission 
information stored on the PMD.  
 
There is a well known problem in trusted systems we call the “fixed point theorem.” 
Encryption keys can be wrapped in other encryption keys, which can be wrapped in still 
other keys to a desired depth, for protection during transmission and storage outside of 
the crypto component. However, at some fixed point there needs to be a secret cleartext 
key pre-placed to permit decryption to begin to unwrap keys for the boot process to 
unfold in a staged and protected manner. In MLS-PCA the fixed point is a physical 
“ignition key” inserted into the system, and a pre-placed PKI private key in non-volatile 
memory of the NSE processor board. The ignition key is used to begin the unwrapping of 
encrypted keys using a physically protected token. To decrypt the PMD, the ignition key 
will be carried to the vehicle by the pilot (or mission commander for pilotless vehicles) 
and inserted in the cockpit prior to takeoff. The ignition key, like the PMD, is created by 
the MPC. We anticipate NSA will be responsible for the PMD encryption/decryption 
logic and wiring of the ignition key reader and PMD. 
 
Typically, there will be one NSE and thousands of AAP-EPE pairs. The NSE may be 
redundant or distributed for reliability. The boot logic for the system will have the NSE 
loaded first, followed by prioritized EPE-AAP pairs loaded from the PMD. The mission 
will drive all the initialization parameters. MPC will determine the load priorities, 
locations of all devices and processes (i.e., their net addresses, Adn and Ade), their 
identifications (Idn, Ide), and the PKI private key and public key of the NSE (Nv and Np, 
respectively). MPC will also build a table of permissions and classifications for all AAPs, 
the Bell-LaPadula access matrix, for the mission. Lastly, the NSE will know all these 
initial conditions by loading the access matrix from the PMD; the EPEs will know some 
of these data by parameter loading by MPC or NSE for each EPE-AAP pair code loaded 
– Np, Adn, Ade, Idn.  
 
3.6.2 EPE-NSE Initialization Protocol 
 
There can be a priority of operation of the mission functions reflected in the order of 
AAP initialization. The NSE will know that priority. For an AAP to run it must first be 
bound to an EPE. Since both AAP and EPE are software processes, there is no spatial 
association other than that they run on different processors. Also, there is nothing unique 
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about an EPE; any EPE can be bound to a unique AAP. The NSE reads the PMD and 
creates an EPE, loading and/or assigning parameters to bind it to an AAP. The EPE is 
then executed while the NSE creates another EPE. The EPE’s first action is to generate a 
random key (Er). Since all EPEs are identical, Er must be based on some changing system 
variable to avoid repeating Er among different EPE invocations.  Its next action is to 
create and send a Hello message to the NSE, giving the Hello message identification, its 
net address (Ade), random key (Er), and an integrity checksum, all wrapped in the public 
key (Np) of the NSE. This foils unauthorized reading of the Hello message by possible 
Trojans hidden in the architecture. The NSE saves these parameters and assigns the next 
priority AAP to this EPE by assigning an identity (Ide) to the EPE; Ide can be the identity 
of the bound AAP. It includes its own Idn to confirm to the EPE its identity, gives a 
newly created NSE-EPE session key (Ns) based on the security level of the bound AAP, 
adds an integrity checksum, and wraps the whole message in the EPE’s Er. This provides 
critical information securely to the EPE to whom it is bound, including the session key 
for further NSE dialogs, the identity confirmation of the NSE, and an indication that a 
false NSE is not spoofing it. The last message by the EPE is an acknowledgement to 
synchronize state with the NSE. This complete initialization sequence and state space is 
shown graphically in Figure 3.6. 

State Space

EPE NSE

@Start:    Np, Er, Idn, Ade, Adn           Nv, Idn, Adn 

@ End 1: Np, Er, Idn, Ade, Adn Nv, Idn, Adn, Ns, 
Er, Ade

@ End 2: Np, Er, Idn, Ade, Nv, Idn, Adn Ns, 
Adn,, Ide, Ns Er, Ade , Ide 

@ End 3: Np, Er, Idn, Ade, Nv, Idn, Adn

Adn , Ide, Ns Ns, Er, Ade , Ide 

Where:

Np = NSE Public Key         Ns = NSE-EPE Session Key
Er = EPE Random Key    Ide = EPE Id, Idn = NSE Id
Nv = NSE Private Key     Ade = EPE Address
Adn = NSE Address

1

2

3

NSEEPE Message

(Hello, Er, Ade, Ck)Np

NSE Reply: (Ns, Idn, Ide, Ck)Er

EPE Ack: (Ide, Ck)Ns

 
 

Figure 3.6: EPE Initialization Protocol 

 
4 MLS-PCA FORMAL MODEL 
 
This section discusses the formal modeling effort [Hashii03a].  It begins with a 
description of the formal model specification language.  It then describes the formal 
model, MLS-PCA constraints arising out of the formal specification, and experiences 
learned. 
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4.1 Formal Methods 
 
Formal methods are the use of mathematical notion for specifying and proving theorems 
about programs.  Frequently, the act of formal specification forces developers to think 
clearly about the design of a system. 
 
Typically, specification alone is not sufficient, as one is not sure if it is right.  
Verification can be done via review by other formal methods specialists and domain 
experts.  However, this approach can be arduous and time consuming.  What is desired is 
something that provides more immediate and precise feedback.  There are a number of 
other tools that are relevant.  Type checkers provide syntactic checks as a first defense 
against incorrect specification.  However, as more analysis is usually required, type 
checkers are typically part of a theorem proving or model checking system. 
 
Theorem proving would be ideal, since it provides an actual proof that a specification 
describes behavior consistent with its correctness criteria.  However, theorem proving 
tends to be a long and arduous process, usually requiring a user to create or direct a proof, 
even with automated tools.  The goal for a theorem prover is, given a theorem, 
automatically generate a proof of its correctness.  Since theorem proving is generally 
undecidable, automatic theorem provers cannot work in all cases.  On the other end of the 
spectrum, proof checkers require the user to generate the proof.  Most theorem proving 
tools lie somewhere in the middle, containing some automatic deduction while allowing 
the user to direct the proof steps. 
 
Model checking, on the other hand, is completely automated.  A model checker searches 
the system's state space for invalid states.  Since one cannot possibly check all states, the 
state space is usually restricted, either by modeling the system as finite-automata or by 
restricting the range of the variables at analysis time.  Similar to testing, model checking 
usually does not result in a full proof of correctness.  However, it will give a good 
indication of a specification's correctness and is a useful middle ground between doing 
formal proofs and doing specification only.  
 
4.2 Alloy 
 
As mentioned earlier, formal specification is necessary for high assurance systems.  We 
chose Alloy as an approach to performing formal analysis.  This section will present an 
overview of Alloy.  Alloy was developed by Dr. Daniel Jackson at MIT for the purpose 
of abstract software design.  We begin by describing why we chose Alloy as our formal 
modeling language.  We then describe the Alloy language and analyzer. 
 
4.2.1 Choosing Alloy 
 
Analyzing a formal specification by hand is beyond the abilities of even top 
mathematicians.  As a result, we needed to find both a formal specification language and 
tools that would support it.  We examined a number of formal specification language to 
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use in our effort.  We looked at Ina Jo, Z, EVES, PVS, Isabelle, ACL2, VDM, Alloy, and 
ASTRAL. 
 
The criteria for evaluation of the methods include: 

• Language: How understandable is the language.  Is it intuitive?  Is there 
support for mapping a specification onto an implementation, also referred to 
as refinement, i.e., can one prove that an abstract specification correctly 
represents the implemented system?)  What are the ways of expressing state 
transitions?  Are there ways to explicitly specify error conditions? 

• Verification: Are there proof tools?  How automated is the proof tool? 
• Availability: Are the tools free for commercial use?  If not, how costly are 

they?  Is there support for the tools, either from a user's groups or the vendor?  
What is the level of documentation? How extensive is the documentation?  
Are there good examples?  Is there an active mailing list or newsgroup?  Has 
it been successfully used on other third party projects? 

 
Our primary choice was Ina Jo [Locasso]; however, there is no longer any tool support 
for it.  Others, such as ACL2 [Young] and Isabelle [Griff], are more concerned with 
proving theorems than creating easily readable state models.   A language such as Z 
[Spivey] is ideal for specifying the sort of formal state machines required for high 
assurance systems.  However, the difficulty is that many theorem proving tools, 
particularly those for Z (e.g., Z/EVES [Saaltink]), while good for academic use, were, at 
the time, extremely expensive for commercial users.  For a more detailed survey on these 
languages, see [Hashii01]. 
 
Although we had originally desired theorem proving capabilities, a good deal of the 
advantage to using formal methods is in the writing of the specification.  Writing a 
specification forces one to think through the design.  Actually proving the specification, 
on the other hand, requires a much larger investment in time and resources.  However, a 
specification alone is not sufficient, as the validity of the model remains uncertain.  The 
alternative to theorem proving is to have an expert eyeball the specification for errors.  
We decided that automated model checking through state space exploration is a 
reasonable compromise. 
 
As a result, we choose the Alloy constraint language from MIT [Jackson01a; Jackson01b; 
Jackson96].  The original version of Alloy was based on a combination of Z and UML.  
A newer version dropped the UML aspect in favor of more generality.  Alloy has a freely 
available tool, the Alloy Analyzer (AA), that operates by logically enumerating the 
various possible states in an attempt to find an instance that fits, or violates, the 
constraints.  In addition, since Alloy is based on first-order logic, the specification is 
more amenable to full theorem proving, should the technology become available. 
 
4.2.2 Language features 
 
The Alloy language is comprised of a fairly straightforward ASCII text notation.  The 
language is based on set theory, similar to Z, with the standard set operators and 
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quantifiers.  A state is defined by sets and relationships among them.  An operation will 
transform a state to a new state, i.e., the sets are modified.  Alloy also allows the 
specification of invariants.  AA will attempt to show that no operation produces an illegal 
state that violates the invariants.  One can then use an inductive argument to claim that if 
an initial state is legal and all operations produce legal states, the system cannot be in an 
illegal state and the specification is correct. 
 
4.2.3 Alloy Analyzer 
 
AA is a tool that can be used to determine if a specification is over-constrained or under-
constrained.  One specifies a scope size, the number of instances of a particular type of 
variable.  If no instances are found that satisfy the constraints, then the model is over 
constrained.  One can also specify assertions that the analyzer attempts to disprove by 
finding counterexamples.  In this manner, one can detect if the model is under-
constrained.  Note that this does not create a formal proof of the model, only that the 
model is valid within a particular scope.  The possibility exists that the analyzer might be 
able to find a counterexample by increasing the scope size. 
 
4.2.4 Translation to Alloy 2 
 
While we were refining our model, the Alloy language underwent a revision.  We 
decided to migrate our model to the new version of Alloy.  The new version of the syntax 
introduced the notion of a signature into the language.  A signature essentially defines a 
set, and is analogous to a variable type.  State is generalized to a signature.  Operations, 
then, take the pre- and post-states as parameters.  Only the relationships that can change 
are part of the state signature, simplifying the frame condition.  Typically when 
specifying state transitions, one must not only say what changes, but also what does not 
change.  This is known as the frame condition.  As one can write a state signature so that 
only the relationships that can change are a part of it, the frame condition can be greatly 
simplified.  Signatures also increased the modularity of the specification, allowing us to 
analyze operations in isolation from other operations.  Unfortunately, we were unable to 
modularize the state to the extent we hoped due to the interdependencies between the 
different MLS-PCA model elements.  However, we did use the increased modularity to 
refine the model in those areas that could be isolated, resulting in a greater understanding 
of the architecture. 
 
4.3 Model Description 
 
This section provides a brief overview of the formal specification.  Table 4.3 gives the 
size of our specification in terms of the number of elements that make up the MLS-PCA 
Alloy model: signatures, relations, operations, invariants, predicates, and facts.  This 
section will discuss and give examples of each in turn.   
 
 
 



15 

Table 4.3: MLS-PCA Formal Specification Characteristics 

Feature Quantity 
Signatures (i.e., Domains) 63 
Relations (i.e., State Variables) 64 
Operations  (i.e., Transforms)  39 
Invariants  (i.e., Constraints) 18 
Predicates  (i.e., Conditionals) 38 
Facts  (i.e., Definitions) 28 

 
4.3.1 Signatures 
 
The model has five basic signatures or types: processors, processes, data, security labels, 
and state.  The other 58 signatures consist of subtypes of these five.  There are two 
primary types of processes: EPEs and AAPs.  The NSE is a subtype of AAP.  We also 
define another subtype of AAP, the SSO (System Security Officer), that has certain 
administrative privileges, such as changing DAC permissions and rekeying connections.  
There are three main types of data: messages, cryptographic keys, and audit logs.  
Messages are further divided into the individual message types used to implement the 
model’s various protocols.  Likewise, cryptographic keys are further divided based on 
their functionality: authentication keys, encryption keys, and policy keys.  This last 
separation was to ensure that cryptographic keys are used for the purposes for which they 
are intended, and, more importantly, they are not reused for another purpose [NIST].  If a 
key is reused, say in an encryption and an authentication algorithm, then a weakness in 
one could increase the ability of cryptanalysis on the other.  
 
4.3.2 Relations 
 
The 64 relations between signatures consist of both dynamic relations, defined in the state 
signature, as well as static relations defined outside of the state.  Examples of the 
dynamic relations include the binding of AAPs to EPEs, which processes are running on 
which processors, the contents of local memory and communication buffers, and current 
coalition membership.  Examples of the static relations include message fields, both 
header and payload, that should not change throughout the life of the message.  Another 
example is the definition of encryption, which is a relationship between a key, a message, 
and an encrypted message.  The security labels of both processes and data are also static 
relations.  We had considered making them dynamic relations, but that would have 
violated the Bell-LaPadula (BLP) Tranquility Principal [Bell; Sandhu].  BLP is our 
formal security policy for the MLS-PCA model. 
 
4.3.3 Operations 
 
The operations describe all possible state changes.  Many of them reflect the model’s 
protocols.  Each protocol contains a dialogue between the NSE and an EPE.  Each part of 
the dialogue has its own Alloy operation.  For instance, the open protocol (shown in 
Figure 4.3.3) begins with an AAP, A, sending a message, M, to another AAP, B.  The 
second operation has the EPE taking that message, realizing that it has no key for that 
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connection, and sending an open request to the NSE, encrypted in the session key SA1 
that is used for communicating with the NSE.  The third operation has the NSE's EPE 
decrypting messages and passing cleartext to the NSE.  In the forth operation, the NSE 
determines if access is allowed, and either sends keys, SAB to both ends of the requested 
connection, or it replies with a denied access message and records an audit log.  The fifth 
operation has the NSE's EPE encrypting and sending the SAB response to A's EPE and B's 
EPE.  Note that because session keys are unidirectional, another NSE-EPE key for the 
other direction is used by the NSE's EPE, SA2.  There are two options for the sixth 
operation.  Either the AAP's EPE decrypts the response and has the keys or it is denied 
access.  Assuming access is allowed, the AAP's EPE sends an acknowledgment that the 
key was received.  When both acknowledgments are received in operation seven, the 
NSE will send a message to A's EPE to start using the key.  In operation eight, A's EPE 
will send M encrypting it in the new session key, SAB.  B's EPE will now be able to 
receive and decrypt M, and finally, in operation nine B will receive M. 
 

There are two additional operations involved in this sequence that are not shown.  One is 
to move messages around the network.  The other decrypts and authenticates messages 
arriving at an EPE.  There is a similar sequence of operations for each of the other 
protocols. 
 
4.3.4 Invariants 
 
Invariants are used to show the correctness of the model.  The primary invariants pertain 
to ensuring the validity of the MLS BLP policy, i.e., an AAP's security label always 
dominates the label of data in its memory.  Some additional invariants are required to 
ensure that the policy is valid after every operation.  For example, the MLS BLP policy 
invariant also requires an additional invariant that says that an EPE only sends a message 
if the receiver is allowed to access it.  As an EPE will only send a message if it has an 
appropriate key, this invariant, in turn, requires another that says that if an EPE can 

Figure 4.3.3: Open Protocol 
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decrypt and authenticate a key distribution message from the NSE, then the EPE is 
allowed to use that key.  As the NSE can guarantee the correctness of this statement, the 
original invariant can be shown to hold.  In this manner, the functionality of the system 
can be shown to be correct. 
 
4.3.5 Predicates and Facts 
 
The final part of the specification includes predicates and facts.  Predicates are helper 
functions that are used to ease the specification of operations and invariants.  They 
provide a higher-level abstraction for a set of constraints.  For example, there is an 
allowed access predicate that specifies both MAC and DAC constraints.  There is also an 
encryption predicate that defines what encryption means in the model in terms of 
relationships between messages and keys. 
 
Facts are constraints on the model, similar to invariants, but differ in that they are by 
definition true.  For instance, there is a fact that says a message's sender defines the 
classification of the key used to encrypt that message.  Our architecture does not check 
data security labels, so there is no reason for them to exist in any implementation.  
Instead, the data's security level is inferred from the level of the process that sends the 
data, with the exception of the NSE, which is a trusted MLS subject, operating at the 
security level of the connection receiver.  The model associates a classification with data 
in order for invariants to be written that ensure data at a high classification level does not 
reach a process at a lower level, i.e., an unauthorized write-down. 
 
4.3.6 Alloy Example 
 
As an example of how the Alloy Constraint Analyzer provides feedback for 
modifications to the specification, this section presents one of the problems we found.  In 
the specification, encryption keys are represented as data elements with an associated 
security level classification.  The problem was that the classification of session keys was 
not initially constrained, i.e., the security level of the key must dominate the security 
level of the connection.  The analyzer detected this problem during inspection of the 
EPEReceiveKey transformation, operation five of the open protocol illustrated in Figure 
4.3.3.  EPEReceiveKey is the transformation that details the process of an EPE receiving 
a key distribution (KeyDist) message.  The case presented here is for the EPE that will be 
the receiver end of the new connection being created.   
 
The operation EPEReceiveKey transitions from state s to state s' and describes what 
happens when an EPE (p) receives a key in key distribution message (KeyDist) from the 
NSE. The EPE essentially removes the message from its processing buffer 
(Processbuffer) where the decrypted and authenticated messages are stored for further 
processing, adds the key to local memory (LocalMemory), creates an acknowledgement 
(ack of type ACKReceiveKeyDistMsg), and sends an encrypted version of it (dack) 
to the NSE by placing it on its outbound network buffer (Outbuffer).  The transform 
is shown here with ellipses inserted for brevity: 
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fun EPEReceiveKey(s,s':State,p:EPE) { 
  // precondition 
  executing(s,p) 
  some m:KeyDist | { 
    m in s.Processbuffer[p] 
    s.bound.p in m.receiver 
    … 
 
    // body 
    some ack,dack:ACKReceiveKeyDistMsg | { 
      ack.receiver = m.sender 
      ack.sender = s.bound.p 
      ack.KeySender = m.newCurrentKey.source 
      ack.KeyReceiver = m.newCurrentKey.dest 
      encryptAndAuthenticate(s,p,ack,dack) 
 
      s'.Outbuffer[p] = s.Outbuffer[p] + dack 
      all t: Process - p | s'.Outbuffer[t] = s.Outbuffer[t] 
      … 
      (s.bound.p in m.newCurrentKey.dest || s.bound.p in  

s.members[m.newCurrentKey.dest]) => { 
        … 
        assignedAddSub(s,s',p,m.newCurrentKey,m) 
        … 
        } 
      } 
   
    s'.Processbuffer[p] = s.Processbuffer[p] - m 
    all t: Process - p | s'.Processbuffer[t] = s.Processbuffer[t] 
    all t: Process - p | s'.previousKey[t] = s.previousKey[t] 
    } 
   
  // frame 
  … 
  } 

 
The first step in analyzing the transformation would be to check that it is not over-
constrained.  In other words, given some valid starting state, e.g., Figure 4.3.6-1, the 
constraints specified by the transformation from that state to some second state, e.g., 
Figure 4.3.6-2, are satisfied. Alloy does this through the use of the run command.  The 
run command allows us to simply search for a valid instance.  In this case, the search was 
run over the logical AND of valid starting states and the transformation.  For this 
transformation, instances were found immediately. Validity means a state and transform 
satisfy the model constraints and facts. 
 
The second step is to check whether every possible instance results in a valid second 
state; this is checking that the specification is not under-constrained.  Alloy does this by 
using the check command.  Alloy checks the implication that a valid starting state and a 
valid transformation results in a valid second state by attempting to find a 
counterexample.  In this example, Alloy produced a counterexample (shown in Figure 
4.3.6-2), which shows a second state – Figure 4.3.6-2 – that violates the invariant 
invMemAccess.  This invariant states that a process’s security level dominates the level of 
all the data in its memory: 
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fun invMemAccess (s:State) { 

all p:Process,d:Data | inMemory(s,p,d) => canAccess(p,d) 
} 

 
The problem here is that the initial state is not one intended to be valid.  The 
classification of the key should be reflective of the connection that it serves.  The fix was 
to add a fact to the specification that sets the classification to the security level of the 
sender, except when the sender is an NSE, in which case it should be set to the security   
level of the receiver: 
 

all k:sessionKey | { 
k.source !in NSE => k.classification = 

k.source.currentLevel 
k.source in NSE => k.classification = k.dest.currentLevel 
} 

 
The valid start and second states with the fix applied are shown in the Alloy state 
diagrams of Figures 4.3.6-3 and 4.3.6-4. 
 
Figures 4.3.6-1 through 4.3.6-4 show portions of the visual output provided by the Alloy 
Constraint Analyzer, greatly edited for readability.  Each figure represents one state of 
the system.  Each ellipse represents one entity in the system and the arrows represent 
relationships between the entities.  For instance, in Figure 4.3.6-2, the EPE “Principal_3” 
is executing on the physical processor “Processor_0”, which has the key “Data_3” in its 
memory.  Likewise, “securityLabels_0” dominates “securityLabels_1” much like “top 
secret” dominates “secret” in conventional classifications.  In the ellipses the parentheses 
terms show what subset that entity belongs to (i.e. EPEs are a subset of “Principal”).  For 
keys, “dest” and “source” relate the key to a connection from the AAP “source” to the 
AAP “dest”. 
 
These figures show how the addition of a constraint, in this case a fact, can correct an 
under-constrained state.  Before the addition, the state shown in Figure 4.3.6-1 was valid.  
After the addition, Figure 4.3.6-1 was not valid because it violated the new fact we added 
“all k: sessionKey | {...  .”  Figure 4.3.6-3 shows a valid state.  As a result, 
when the transformation leads to the resulting state – Figure 4.3.6-4 – it is now also a 
valid state.  By analyzing the code and the counterexample provided by the constraint 
analyzer, one is able to both find holes in the model and their solutions.  This is a very 
helpful feature of Alloy; it not only provides a pass/fail assessment of the model, it also 
provides insight to the problem on failure. 
 
The entire finished specification can be seen in [Hashii03b]. 
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Figure 4.3.6-1:  Initial State of Counterexample. 

Notice that the classification of Data_3”(securityLabels_0) is higher than that of “Principal_3” 
(securityLabels_1) because securityLabels_0 dominates seculityLabels_1. 

 
Figure 4.3.6-2:  Resulting State of Counterexample. 

Notice that “Principal_3” at securityLabels_1 is executingOn Processor_0 and has key “Data_3”, 
at securityLabels_0, a higher classified level, in its localMemory. That violates the constraint 
invMemAccess. 
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Figure 4.3.6-3:  Initial State After Correction. 

Notice that “Data_3” is now at the same classification level as “Principal_3,” securityLabels_1. 

 
Figure 4.3.6-4:  Resulting State After Correction. 

Since “Data_3” is at the same classification as “Principal_3,” securityLabels_1, it can be added to 
memory without a violation. 
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4.4 Formal Constraints 
 
One of the goals of this project is to determine the security constraints on PCA 
applications.  Constraints show up in the formal specification in four places: the state 
description, facts, the operations, and the invariants.  Table 4.4 lists these constraints. 
 
The first area of constraint specification is in the definition of the state variables.  For 
example, the constraint that there is only one process running on a processor is given in 
the state description of the relationship between these variables.  Another example of this 
kind of constraint is that there is only one EPE bound to an AAP. 
 
The next area of constraints is facts.  These differ from invariants in that they are by 
definition true.  For instance, the solution to the problem discussed in Section 4.3.6 is to 
have a fact that enforces the constraint that “the path’s sender defines the classification of 
its key.”  Our architecture does not check data security labels, so there is no reason for 
them to exist in any implementation.  Instead, the data’s security level is inferred from 
the level of the process that sends the data, with the exception of the NSE, which is a 
trusted MLS subject operating at the security level of the connection receiver.  The model 
associates a classification with data in order for invariants to be written that ensures data 
at a high classification level does not reach a process at a lower level, i.e., an 
unauthorized write-down. 
 
Another example of a fact constraint is that messages must be received in order.  Again, 
this is not something that our architecture checks, but is something that our architecture 
assumes is true of the underlying network. 
 
The above two types are the ones most likely to place constraints on the PCA hardware or 
morphware.  The next two types of constraints are ones primarily placed on our security 
architecture.  The first of this type is the operations or transforms.  A transform describes 
the condition that must exist before and after an operation.  The notion of an AAP and its 
bound EPE sharing the same fate, “fate sharing,” is made in the transforms dealing with 
starting and stopping a process.  Similarly, a transform describes the constraint that an 
AAP can only communicate through an EPE. 
 
The last type of constraint is the invariants.  These are statements that the analyzer must 
show are true, and that the functionality of the architecture does not invalidate.  Examples 
of this type of constraint include enforcement of the MLS policy that AAPs can only send 
data to other AAPs whose security level dominates their own, and that AAPs do not 
receive data that has a higher classification than the AAP’s security level.  Another 
example is that messages from the NSE are correctly formatted and can be authenticated 
as coming from the NSE. 
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Table 4.4: Formal Constraints 

4.4.1 State variables 
• There is one process (AAP or EPE) per processor (Region). 
• There is one AAP and one EPE for each Region; they cannot share resources. 
• There is one EPE per AAP. 
• Each processor has local memory (for storing keys, messages, audit logs, etc.). 
• All buffers are in local memory. 

4.4.2 Facts 
• The path’s sender defines the classification of its key.  
• Messages must be received in order. 
• The DAC key for accessing a coalition is required to be the same for all members of that 

coalition, so that a single session key is generated when the DAC key is used. 
• All EPE-AAP pairs can talk to the NSE 
• AAPs share an address with their bound EPE. Thus, all messages are sent through the 

EPE. 
• Messages do not encrypt to themselves, i.e., there is no “null” key. 
• Encryption and decryption do not change header information. 
• Encrypted messages are unclassified. 

4.4.3 Transforms 
• EPE/AAP are fate sharing. 
• An AAP can only communicate through the EPE. 
• The NSE knows where the EPEs are. 
• EPEs don’t process control messages unless they are from the NSE. 
• Session keys are derived from mission keys, MAC keys, and DAC keys. 
• EPEs have at most two keys for a path, one current and one old, to enable rekey 

asynchronous with current message operations. 
4.4.4 Invariants 

• Data is only accessible by a process if allowed by MAC. 
• If an EPE has a key, then the process is allowed to communicate in that direction. 
• EPEs only have session keys for processes to which they are bound. 
• Messages used by the NSE to communicate keys to an EPE are correctly formatted. 
• The process's security level is dominated by the environment’s level. 
• An EPE only sends messages that are allowed to be accessed by the receiver. 
• All EPEs bound to a process are executing. 
• All executing AAPs are bound to an EPE. 
• EPEs are bound to AAPs in a trusted manner, i.e., have trusted path. 
• Data in a processor’s memory is dominated by the processor’s level. 
• If an EPE has a key, then the EPE’s level dominates any data it receives using that key. 
• The key classification is the same as the information encrypted and sent using that key. 
• AAPs will only have message sent to them; EPEs will not send data to an AAP not 

meant for it. 
• All rekeys for a simplex path are only sent to members of the path. 
• The private key is only in the memory of the NSE and/or its bound EPE. 
• Unbound EPE’s only contain the public key of the NSE in its memory. 
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4.5 Influence on Design of Formal Methodology 
 
The promise of formal methods is to detect errors early in the design cycle.  The later one 
finds mistakes, the more costly they are to fix.  This section will discuss some of the 
influences the formal modeling had on the design.  The process of writing the formal 
specification resulted in early design decisions.  AA found other problems.  This section 
will first examine each area where formal modeling influenced the design. 
 
4.5.1 Focused Design 
 
The process of writing the formal specification focused the design of the functional 
model and raised many questions. 
 
A big question was: How do you initialize the system?  In other words, what is the initial 
condition?  An early version of the formal specification asserted the initial condition and 
only dealt with the normal steady state operations.  However, subsequent revisions forced 
us to determine how we arrived there.  The NSE needs to be able to communicate with 
EPEs and it needs to be able to do so securely in order to distribute keys.  Since these 
keys should not be sent in the clear, they must themselves be encrypted.  This means that 
the NSE and EPEs must already share a key.  How is this key distributed?  The key could 
be built into the EPE code, but then how is this code distributed and loaded in a secure 
manner?  There must be some bootstrapping mechanism to get a key loaded into an EPE. 
 
There are a number of options we considered.  The first was to have an ignition key 
physically inserted in the NSE and each EPE.  However, while this might be acceptable 
for the NSE, as our model can consist of tens of thousands of processors, manually 
inserting a key into all of the EPEs is not feasible.  Another option was to have the key 
built into the hardware.  The Trusted Computing Platform Alliance (TCPA) has begun 
work involving built-in hardware keys [TCPA].  However, this approach suffers similar 
problems as there will be thousands of EPE processors.  We wanted our approach to have 
greater flexibility.  EPEs may exist in software and/or hardware, and we want to map the 
model to existing processors.  We considered using Diffie-Hellman [Diffie 76] but that is 
susceptible to a man-in-the-middle attack.  This form of attack is usually countered using 
certificates and public key signatures [Diffie 92].  The problem with the signature 
approach is that it requires the EPE to have a private key, which returns us to the problem 
of getting a private key into thousands of EPEs. 
 
The solution we settled on came from the realization that, while we could not load the 
EPE with a private key, it could be loaded with a public one.  Thus was born the solution 
discussed in Section 3.6.  By forcing us to look at the problem early and often, the formal 
methodology helped us to arrive at a solution that works. 
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4.5.2 Design Error 
 
Another advantage of doing a formal model is the ability to examine the model for design 
errors, even before doing a formal analysis. 
 
One such error was found when dealing with reboots.  There are times when an avionics 
system needs to accommodate an inflight reboot [Tiripak 2002].  For example, fault 
recovery might consist of rebooting a corrupt processor.  As explained in Section 4.5.3, 
when an AAP goes down, its associated EPE must also go down.  As a result, all 
connections previously established will be lost.  We could either notify the other end of 
the connection, or simply re-establish the connections.  We chose the later approach.  
When an AAP/EPE combination comes back up, the EPE will do the initialization 
procedure described in Section 3.6.  The NSE will then send a new set of keys for each 
previously opened connection involving that AAP. 
 
Human examination of the formal specification found an error pertaining to the 
synchronization of the new keys.  There are two types of messages used to transmit keys 
from the NSE to an EPE: the initial key distribution message and a rekey message.  The 
key distribution message is the result of the open protocol of Section 4.3.3.  Rekey is 
required when a crypto period expires or when other events demand a key change.  The 
rekey protocol is similar to the open protocol illustrated in Figure 4.3.3, except that rekey 
doesn't require storing M until the protocol is finished as the EPE can send M using the 
old key.  Rekey also uses a two key scheme.  This means that the old key is stored in case 
a message is later encountered that is encrypted in the old key.  Also like the open 
protocol described in Figure 4.3.3, the new key is not used until the EPE receives a 
message from the NSE letting it know that both sides have received the same key.  In the 
case of reboot, the initial idea was to send a key distribution message to the rebooted EPE 
and a rekey message to the other side of the connection.  However, the acknowledgments 
for a rekey and a key distribution message are different.  The NSE, upon receiving both 
acknowledgements will not be able to tell if they are the result of a rekey due to reboot, at 
which point both ends of the connection will have the same key and the EPEs can start 
using it, or if the acknowledgements are due to separate open and rekey operations, at 
which point each end of the connection will have different keys.  Thus, the message to 
start using the key will never be sent.  In the rare case where a key distribution message is 
immediately followed by a rekey, the acknowledgment difference is necessary.  The 
solution was to send a key distribution message to both sides and change key distribution 
to also keep track of the two key scheme. 
 
4.5.3 Error Found Via Automated Analysis 
 
By formally specifying the model in Alloy, we could check for errors using AA.  The 
vast major of errors found by AA were errors in writing the spec: typos, an incomplete 
frame condition, and miscommunications in learning Alloy reflected in the difference 
between what was meant and what was said.  However, occasionally an error in the 
formal spec will reveal an error in the functional design. 
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One of the earliest errors found by the Analyzer was the need for an AAP and its bound 
EPE to be fate sharing.  In other words, they need to stop execution at the same time.  
Early versions of the specification without this feature had a problem. The spec allowed a 
process to die and be replaced by another AAP at a different security level, but bound to 
the same EPE.  The analyzer found a case, illustrated in Figure 4.5.3, where a message 
destined for an old Secret (S) process could arrive at a new Unclassified (U) one.  The 
problem is that messages should not be decrypted by an EPE bound to processes that are 
no longer running.  Thus, an EPE and AAP should both go down at the same time -- 
sharing the same fate.  This has the additional advantage of flushing the EPE's memory. 

 

Figure 4.5.3: Fate Sharing 

 

4.5.4 Design Simplifications 
 
In our efforts to reduce the complexity and size of the specification, we discovered a 
number of areas where the design itself could be simplified. 
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One of these simplifications is the notion of a current security level and a maximum-
security level.  BLP distinguishes between a user's current security level and a user's 
maximum-security level [Bell].  The reason is that the user might at times wish to create 
and release information at a lower level than the user's maximum security level.  Running 
a lower level process typically does this.  Although it makes sense for a user to have both 
a current and maximum level, it makes no sense for a process to have them.  Early 
versions of the specification contained both.  However, since there is no explicit concept 
of a user in the MLS-PCA model the maximum level was never used in any meaningful 
way.  As a result, it could be safely discarded. 
 
Another simplification involved the revocation operation.  The original idea was that 
revocation would take advantage of the rekey capability.  When a connection was to be 
revoked, one side would be rekeyed with a fake key and the other would not, thus 
breaking the connection.  In addition to needing to manage a fake key, we also need to 
make sure that we did not inadvertently perform a valid rekey and re-establish the 
revoked connection accidentally.  While writing the specification, we realized that we 
have another operation with somewhat similar properties called zeroize.  It essentially 
causes the EPE to zeroize all keys, and effectively shut down.  A simpler implementation 
of revoke is to use the zeroize mechanism, but to only zeroize keys for a particular 
connection, instead of zeroizing all of them.  Note that here zeroize does not mean to just 
set the key to zero, but also to no longer use the key, as we do not want to continue using 
a zero key.  Thus, we were able to greatly reduce the complexity of the revoke operation. 
 
4.6 Experiences Using Alloy 
 
This section discusses our experiences in using Alloy to model our architecture.  First, we 
will examine some of the limitations of our model.  Next we will discuss our experiences 
using Alloy's graphics rendering features.  Last, we will examine our experiences in 
creating an implementation based on the specification. 
 
4.6.1 State Space Size 
 
Our model is fairly large, as can be seen from Table 4.3.  As a result, the greatest problem 
we encountered was the size of the state space.  We performed our work on a 300Mhz, 
128 MB Sun UltraSPARC-II running Solaris 2.6 and a 2.26 GHz, 512MB IBM Pentium 
4 running Windows 2000.  If the state space were too large, our development machines 
would run out of memory, resulting in the analyzer either crashing or hanging. 
 
The modularity mechanisms introduced in the new version of the language helped 
tremendously.  We could split each operation into modules.  This significantly decreased 
compile time.  However, modularization only resulted in modest decreases in state space.  
Each operation required the same state signature.  Although there were occasionally some 
subtypes, for example certain message types that are only needed by a particular 
operation, the basic types are needed throughout.  As a result, we were constantly 
walking the line between models that could and could not be analyzed. 
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The need to keep the model as small and simple as possible is an advantage in that it 
required a degree of model simplification and abstraction.  For example, we assumed 
reliable traffic.  The abstract formal model should not specify how a network is made 
reliable, only that it is.  This allowed us to not require acknowledgments after every 
message, as one would find in TCP/IP; we only needed to synchronize state between the 
various elements.  This also allowed us to forgo timers and, as a result, an explicit time 
variable.  Likewise, encryption is a simple relation between a plaintext message, a 
ciphertext message, and a key.  The details of the encryption algorithm, e.g., DES or 
AES, do not need to be specified. 
 
However, there were times that the need to reduce the state space resulted in 
specifications that were not ideal.  For example, consider the case of a revoke message 
being sent immediately after a key distribution message.  There is a possibility that the 
EPE receives the messages out of order.  In such a case the EPE might accept a key for a 
revoked path and thereby allow unauthorized communication.  Thus, messages must be 
delivered in order.  This is fairly easy to do using sequence numbers.  Unfortunately, this 
would have increased the state space by adding a new signature type.  Likewise, Alloy 
provides an ordered list package that could have been used for the communication 
buffers.  This too would have increased the state space.  We eventually decided to modify 
the definition of the message buffers so that only key distribution messages can be sent 
more than one at a time.  This forces an ordering in that a message must be processed 
before the next is sent.  This solution has the additional benefit of forcing a smaller state 
space.  However, it adds an unnecessary constraint to the model.  However, since an 
operation can only process one message at a time, we felt that this constraint would not 
prevent finding bad states. 
 
4.6.2 Revocation Synchronization 
 
The lack of time discussed in the previous section can, however, result in problems.  For 
example, the NSE and EPE need to synchronize when DAC permissions are revoked or 
an AAP is removed from a coalition.  One of the invariants the analyzer checks says ``a 
communications path between AAPs is in existence only if the MAC and DAC policies 
allow it."  The problem is that DAC permissions can change and there is a delay in 
communicating that change to the EPEs.  As a result, there will be a period of time where 
a path is in existence and it is not allowed.  Most operating systems do not revoke access 
immediately because of the complexity involved in dealing with this synchronization 
issue.  The Multics operating system, on the other hand, did implement immediate 
revocation [Karger].  However, the analyzer noticed that, unlike Multics, our revocation 
couldn't be immediate due to the distributed nature of our architecture.  However, we 
make an attempt to revoke as soon as possible. 
 
The end result is that the analyzer found a case where the operation for changing 
permission invalidated the DAC invariant.  Normally, this sort of invariant check is used 
to determine if an operation is under-constrained.  An alternative possibility, as was the 
case here, is that the invariants are not valid and it is they that are over-constrained.  The 
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solution was to weaken the DAC invariant and return to the policy that most operating 
systems have: only guarantee DAC is true for new paths. 
 
4.6.3 State Diagrams 
 
Alloy also has a feature for graphically representing the instances discovered by AA.  We 
did not find this feature to be terribly useful.  In fact the graphic typically produced by 
AA was unreadable, mostly due to the large size of our state space. 
 
Although not useful for analyzing the model itself, the diagrams do have a slightly higher 
utility for illustrating a state instance for explanation to others.  In order to accomplish 
this, the graphic needs to be pared down to contain only those variables and relations 
needed for the point being made.  Fortunately, AA has a built-in facility for doing 
precisely that, as well as adding additional subtype labels. 
 
However, the resulting graphic is still somewhat difficult to understand.  Fortunately, AA 
uses a graphics tool from AT&T Labs called dot [Kouts], and modifying the resulting dot 
file is quite simple.  There were two types of manual modifications that we made.  The 
first was to remove unnecessary instances of a type.  The second is due to differences 
between the current version of Alloy and the previous one.  The previous version of 
Alloy produced two graphics, the before state and after state.  As the new version of 
Alloy does not require state variables, AA now only produces one graphic with both the 
before and after states on it.  We found it useful to separate back out the different states in 
order to better illustrate state transitions. 
 
Despite these modifications, the resulting graphics were still not very enlightening for 
others unfamiliar with the language.  However, we suspect them to be more enlightening 
for the uninitiated than the textual representations of the same instances.  The results of 
these modifications can be seen in Figures 4.3.6-1 through 4.3.6-4. 
 
4.6.4 Experiences During Implementation 
 
After having corrected the problems discovered in Section 4.5, we began implementing a 
prototype using IRAD funding in order to further shake out the model.  As we do not 
have thousands of processors on which to test, we simulate the environment using grid 
computing.  The PCA paradigm assumes multiple CPUs per chip.  This implementation 
process helped to further refine the design.  These areas can be put into two categories. 
 
The first contains cases that resulted from omissions in the operations.  Although these 
omissions did not violate the security invariants, they are omissions that need to be 
addressed in the running system.  For example, when a process reboots, the NSE will 
automatically re-establish the pair-wise connections, but not the coalition keys.  The NSE 
either needs to distribute those keys or remove the rebooted process from the coalition.  
We decided that since the AAP is responsible for joining coalitions, it could be 
responsible for re-joining after a reboot.  Thus, the preferred solution is for the NSE to 
remove the rebooted AAP from coalition membership until a new join request is made.  
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Another example is that the NSESendRekey operation only considers pair-wise 
connections, not coalitions.  Note that in both case, there is no security invariant violated.  
The reason these problems were not detected is that we did not write invariants to cover 
these cases, as we had not thought about them at the time. 
 
The second class consists of problems that are due to functional or operational errors.  
For instance, the model says that the EPE and its bound AAP should start and stop at the 
same time.  In reality, the EPE will probably have to start first in order to facilitate the 
loading and execution of the AAP.  Note that the fate sharing solution discussed above is 
only necessary for stopping executing, not starting.  Another example is that the model 
treats an NSE-EPE rekey the same as any other rekey.  When a rekey occurs, the new key 
is distributed to the EPE via the NSE-EPE session key.  However, a rekey should not be 
encrypted in the key it is replacing.  Thus, the NSE-EPE session key needs to be rekeyed 
using a different mechanism.  The solution is to reuse the bootstrapping mechanism for 
setting up the initial session key. 
 
Although there were a few areas where the implementation uncovered problems, the 
formal model provided a framework from which to analyze the problems and devise 
solutions.  As many of the problems were found during the design, the implementation 
required very little re-coding. 
 
 
5 MLS-PCA MODEL MAPPING TO PCA HARDWARE  
 
This section of the MLS-PCA Final Report analyzes how (and how well) the elements of 
the MLS-PCA formal model map onto the PCA chip technology.  As we will see, it is not 
a perfect fit, but it does appear to be feasible with some modification to the PCA 
development approach.   
 
In much of the PCA development efforts, researchers have attempted to virtualize the 
various PCA architectural approaches into a common compilation target, e.g., see 
[Horowitz].  This has been a very useful effort.  However, in the specific tasking being 
discussed here, we have done just the opposite.  We have tried to determine the various 
hardware details that best allowed us to provide a certifiably secure computing platform 
in the specific area of MLS avionics processing. 
 
We have utilized the MIT Raw [Agrawal, Taylor 02] and Stanford Smart Memories 
[Mai] PCA chips as the principal basis for our investigation since they are well 
documented in the open literature. Actually, we have developed a “meld” of these two 
approaches (with a few extensions to provide support for the cryptographic requirements 
of MLS-PCA and to extend the size of a processor group beyond a quad), which has 
produced a generic PCA chip for this analysis.  A good survey of alternative PCA 
architectures can be found in Section 3 of [Campbell]. 
 
The various PCA chip developments were intended to exploit the benefits of parallelism 
by compiling a parallel-capable program onto the multiprocessor PCA chip(s) using 
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whatever form of parallelism best fits the program’s needs.  We are attempting to exploit 
the multiprocessor capabilities of PCA in quite a different way.  We plan to replace the 
several hundred pounds of liquid cooled super computer modules in a typical DOD 
avionics system with a handful of PCA chips.  But, even more importantly, we provide a 
solution to the “MLS risk problem” that has plagued such systems for over a decade.   
 
5.1 A Generic PCA Chip Architecture 
 
Our generic PCA chip is a grid or matrix of computing elements, referred to as “tiles”.  
Each tile may be a processor, an 8 MB block of Dynamic RAM (DRAM) memory, a 
combination of processing and memory, or a special purpose device (e.g., a crypto 
engine). Our “basic building block” is a 2 x 4 tile rectangular region, which can be an 
AAP/EPE or an NSE/EPE. The EPEs all connect to the global bus/network at the edge of 
the PCA chip. Only cipher text appears on this shared global bus/network.  There is a per-
region dedicated set of bus “wires” which connect the tiles within each region for the 
plain text traffic.  Each region provides the morphable multiprocessor platform for one 
application process, e.g., electro-optical or radar processing.  There would be eight such 
regions on one 64-tile PCA chip.  Note that the target subsystem for the compilation is a 
region rather than the entire PCA chip.  Region-by-region morphability is also required.   
The layout of a region is shown in Figure 5.1 below.  
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Figure 5.1: Fundamental MLS-PCA Eight-Tile Region Building Block 

  
 
The EPE crypto and processor tiles are positioned at the two end tiles in the 8-tile region.  
They are at the edge of the chip, and the cipher text bus is connected to the global 
bus/network. The remaining tiles consist of processor and 8 MB DRAM memory tiles for 
the AAP (or NSE).   
 
One of the fundamental reasons for having both processors and memory built into the 
same chip is the “wiring problem”.  This traces its roots back to the early days of super 
computers, when the interconnect wiring was a major limiting factor.  Putting the wires 
on the chip (with VLSI) seemed to solve that problem.  However, at today’s processing 
speeds, we are back to worrying about the speed-of-light transmission times.  Long wires 
are a limiting factor, but now “long” means more than one tile in length.  Smart 
Memories stretches this to the size of one quad, and we have stretched that to two 
adjacent quads in length [Ho]. 

Global 
Bus 
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Our model of operation most closely reflects the Smart Memories bus/network 
configuration with some assumptions about how it could be “locked down” for 
accreditation purposes. In contrast, the Raw chip is quite different in this regard, and to 
quote their documentation [Taylor 03], “the static routers collectively reconfigure the 
entire communication pattern of the network on a cycle-by-cycle basis”, usually a 
security “no-no”.     
 
However, since the avionics MLS-PCA will be a special purpose PCA chip due to the 
encryption tiles, we could etch away in hardware any possible inter-region paths between 
the plain text portions of the regions.  With that boundary “nailed down”, we could then 
let each region morph with impunity (including the above mentioned Raw routers). The 
crypto would likewise be built-in between the red and black buses with no morphing 
supported or required in that regard.  Similarly, the AAP could not morph any aspect of 
the EPE operation. 
 
The physically isolated regions present an interesting situation for the morphware 
compilers.  In the typical avionics application, each separate region is the target machine 
for a different avionics program, e.g., electro-optical versus radar versus fusion 
processing.  However, in a more general usage of this regionalized PCA chip, the total set 
of physically isolated regions could be the target machine.  They could inter-
communicate over the encrypted paths.  If any-to-any (single level) communication is 
desired, the coalition key approach could be used, providing a common key for all 
regions in the set. This might be similar to today’s Grid computing. Off-chip (EPE-
fronted) global storage could also be included for the set (in the form of Network 
Attached Storage).  So, while the “nailed down” region constraints constitute a new set of 
concerns with morphing, they are still consistent with the virtualizations of morphing 
with the Stable API (SAPI) programming model and the Stable Architecture Abstraction 
Layer (SAAL) hardware model [Richards]. 
 
There would be considerable benefit in the initialization and on going monitoring of the 
PCA operation if one provides a support processor to manage the PCA chip.  The support 
processor would consider the PCA chip to be a co-processor.  Another benefit in 
introducing the support processor is the need for some degree of control of the morphed 
configuration that may be essential for the accreditation process, which requires that the 
hardware/software configuration be well defined and unchanged (in any unexpected way) 
without reaccredidation. The support processor could at least monitor the configurations 
that are being morphed by the AAP controls by periodically reading back the morph 
configuration registers and comparing their content with a set of allowed morphs.    
 
PCA chips generally have on-chip high speed SRAM for use as cache(s), and rely on 
DRAM chips connected to the global bus/network for their main memory.  This does not 
work for the MLS-PCA situation due to the multiple levels of security that are involved. 
Each region would need dedicated “wires” and DRAM chips.  Up to 1 GB per AAP may 
be required in the future, so some form of off-chip DRAM will be required, but must be 
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accessible without having to use a shared bus/network.  This might involve morphing a 
wide shared access bus/network into a number of dedicated more narrow bus/networks.   
 
There is another memory aspect that is troubling, namely all of the on-chip PCA memory 
is volatile.  Non-volatile storage is needed for bootstrap initialization and configuration 
storage as well as for a trusted distribution crypto key.  Non-volatile memory is generally 
incompatible with processor and non-volatile RAM application and fabrication, requiring 
different voltage levels and/or additional masking layers.  However, it is possible to build 
such chips, e.g., in “system on a chip” products [SoC NV], so we have not given up in 
this quest.   
 
5.2 Related Technologies 
 
There are several other technologies that relate to PCA that were found useful in this 
analysis.  They are briefly described below. 
 
PCA chips may have a considerable similarity to Field Programmable Gate Arrays 
(FPGAs), i.e., at least those with SRAM configuration capabilities.   In both cases, the 
intra-chip wiring between the candidate set of resources is configurable.  Our analysis has 
relied on the methods used in FPGAs (especially those of Xilinx) as one model of 
operation for the dynamic morphing process  [Xilinx]. 
   
Some of the capabilities that we require do not fit 100% with the CMOS technologies 
that we would expect to be used with PCA chips, e.g., the desire for some amount of on-
chip non-volatile memory (such as flash memory).  In this example, the voltage level that 
needs to be applied to write flash memory is not consistent with conventional lower 
voltage level CMOS fabrication.  Additional mask layers would also be required.  We 
have relied on System-on-Chip (SoC) developments to judge if such MLS-PCA 
requirements are impossible, and we have found that mixed process technology is indeed 
possible, but may have other implications (such as additional costs or a sacrifice in logic 
density)  [SoC NV]. 
 
While the EPE itself does not require MLS, it still does require security assurances such 
as “Trusted Distribution” of its operational software.  The desired approach for trusted 
distribution is to have a copy of the source’s public key built into the EPE hardware (e.g., 
in non-volatile memory). The load modules could then be authenticated using the 
integrity check that has been included with the software and signed by its source. There is 
also a need to have the public key of the NSE in non-volatile storage in each EPE for 
initialization purposes.   
 
Another related technology is the Advanced INFOSEC Machine (AIM) programmable 
crypto chip that was originally developed by Motorola and is now a product of General 
Dynamics [AIM].  Our concern was if it would fit into the tile structure of a PCA chip.  
The publicly available information about the AIM chip is that it originally utilized a 0.35 
micron fabrication process and contained 8.5 million transistors.  The die size was not 
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specified.  We estimated the corresponding die size requirements for the PCA tile(s) to 
implement an AIM-like approach by the following steps. 
 

• An earlier Pentium II processor also used the 0.35-micron process and had a total 
of 7.5 million transistors (about the same number as AIM).  Its die size was 209 
square mm.  We used that to compute an estimate of the AIM die size (since the 
process and number of transistors were similar). 

• We therefore assumed that the AIM chip would be slightly larger than 209 square 
mm. 

• Using the projected 0.1 micron process which was assumed in the year 2000 
Smart Memories paper  [Mai], and the 3.5 squared factor of size reduction (from 
the 0.35 micron process), we calculated a 0.1 micron process die size for AIM of 
20 square mm. 

• The Smart Memories tile size was stated to be 2.5 x 2.5 mm, providing 
approximately 6 square mm of “real estate”.  Therefore, the AIM chip capability 
would need three such tiles.  Therefore, we concluded that we could not utilize 
such a highly flexible crypto chip. 

• A scaled-back approach to the crypto chip (without all the flexibility) should be 
much smaller, and we concluded that it could fit on one tile using the 0.1micron 
process. We do need to ensure that the crypto chip has an  adequate random 
number generation capability included within it.  (Among other things, it needs to 
generate a random number for an encryption key as part of the initialization 
process.) 

 
While both MIT and Stanford used MIPS RISC processor cores, we also investigated the 
possible use of Intel Pentium and IBM/Motorola PowerPC cores to determine if they 
were a feasible alternative option.  As the above analysis with the Pentium II showed, it 
would consume the space of three tiles to implement.  More recent Pentium 
implementations have gotten even larger.  Pentiums are CISC computers that would be 
expected to be physically larger.  However, the PowerPC is a RISC-based chip, so we 
evaluated it as well.  The corresponding numbers for at least one version of the PowerPC 
are as follows. 
 

• For a 200 MHz PowerPC, using 0.35-micron process, the die size was 80 square 
mm. 

• For 0.1 micron, the die size scales down to 6.5 square mm. 
• This would fit on one tile (since the PowerPC considered here had about 2.5 

million transistors compared to 7.5 million for the Pentium II). 
• Some other PowerPC chips would be much larger, so this analysis does not apply 

to all PowerPC implementations. 
• In comparison, the transistor count for the MIPS 4000 is 2.3 M while that for the 

MIPS 5000 is 3.0 M, and hence they each will fit on one tile.  
 
Another potentially related technology is Digital Signal Processors (DSPs).  There has 
been an established preference for special DSPs for applications such as radar processing.  
Hence, would the avionics PCA suite require DSP tiles?  Work reported by MIT [Wentz] 
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using Raw showed how it performs well in signal processing applications.  We agree 
with the conclusion of the paper since the performance of general purpose processors is 
becoming increasingly competitive against specialized DSPs.  We quote from “Moore’s 
Law and its Implications for Information Warfare” [Kopp]; 
 
“While a DSP is architecturally optimized for the application and will always perform 
better than a general purpose processor of similar complexity, running at the same clock 
speed, the question is whether the economics of production volumes will be able to 
sustain the DSP in the longer term.  Cost pressures in hardware and development tools 
will increasingly favour the general purpose processor.”    
 
In addition to Smart Memories, Stanford University has also developed a technology 
called eXecute Only Memory (XOM), pronounced “zom” [Lie].  It is briefly described 
here since it might be used as a hardware base for the NSE.  It is not an appropriate 
candidate for the AAP/EPE since it would be “over-kill” in some cases, and would not 
support the ability to assign XOM-protected software to a backup processor. 
 
The XOM chip is useful when you have one or more of the following concerns: 

1. You want to “lock” the application executable (and its license) to one specific 
computer system (i.e., you can’t successfully copy it) 

2. You want tamper-resistant application software 
a. You want to keep the program algorithms, etc. intellectual property secret 
b. You want to preclude anybody else from making changes to the 

application program 
3. You want to create separate (isolated) data compartments without any data 

exchange between them 
4. You want all data that leaves the chip to be encrypted (e.g., to main memory or a 

network) 
5. You want support for a built in private key, private memory, and traps on cache 

misses 
6. You don’t want to have to trust the OS for access control (i.e., data separation) 
7. You want protection against undetected data corruption in main memory (and 

register contents when swapped out and back in) 
8. You also want backward compatibility with “normal” processing capabilities 

 
All of these capabilities of XOM might make it a very good NSE, since all EPEs know 
the public key of the NSE, and the NSE needs to have its own private key (which XOM 
has in non-volatile storage for the private key).  XOM provides integrity checks over all 
data accesses, which is a good feature for the NSE since any corruption of its security 
database could be very troublesome.    
 
The encrypted executable software doesn’t have any benefit beyond the “decrypt at load 
time” approach.  There is no concern about somebody making a copy of the program or 
modifying it while it’s on the air vehicle.      
 
The separation of processes might be useful in some MLS aspects of the NSE.  
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The XOM approach would have merit in terms of the untrusted maintainer who has 
access through the maintenance panel.  He/she could not read classified algorithms, etc. 
in the code.  Also, the maintainer could not modify the code to insert any specific 
malicious routines.  In addition, XOM provides an MD5 hash (MAC) authenticity and 
integrity check on the software as an on-going function.   
 
XOM does not rely on the OS for security (e.g., partitioning).  Different encryption keys 
keep the processes separated (except for the null key shared area which is another reason 
not to use it as the base for the EPE).    
 
5.3 Elements of the MLS-PCA Model and Their Mapping to PCA 
 
A key part of this task was to demonstrate the mapping of the formal security model to 
the PCA chip and its related resources. This involved several areas of investigation as 
listed below.  
 
5.3.1 Analysis of the Specific Element Mappings 
 
The following items list the elements of the model, and describe how each element is 
supported. 
 

• The AAP is an untrusted process representing a given avionics application.  AAPs 
have a variety of classification levels, but any specific AAP operates at a single 
security level.  Each AAP is bound to one EPE when the AAP code is loaded into 
a specific 8-tile Region of Figure 5.1.  The AAP and its associated EPE map to 
the crypto processor and memory tiles within the Region. The AAP can perform 
any morphing that it chooses within the bounds of the 6-tile portion of the Region 
in which it resides.  For example, it can morph dynamically between parallel 
processing and pipelined processing.   

• The NSE is a special trusted AAP, which may or may not be “housed” within a 
PCA chip.  The trust issue is that it will be functionally MLS, since it deals with 
encryption keys that are classified to the level of the information that they protect. 

• The EPE has trusted cryptographic functionality.  With the exception of the EPE 
associated with the NSE, the EPEs operate at a single security level, namely that 
of the data being processed in the AAP to which they are bound. The EPE maps 
to the two encryption-related tiles of each “8-tile” Region 

 
The combination of the EPE and AAP or NSE forms the basic building block for the 
MLS-PCA as shown earlier in Figure 5.1. The tiles within a region are interconnected via 
one or more (plain text) local bus(es), and the cipher text side of the crypto engine is 
connected to the global network of the PCA chip (and subsequently to the avionics 
interconnect network). The detail elements of the formal model are considered below. 
   

• The AAP/EPE binding is at a single security level based on the avionics function 
that it has been assigned to perform. This binding maps to the bus 
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interconnectivity within an 8-tile Region, i.e., the fact that the AAP processors 
and memory are connected to only the plain text side of the encryption tile.   The 
EPE and AAP processors are “fate sharing” (as required by the model).  This is 
accomplished by periodic software “keep alive” message exchanges. 

• The NSE/EPE binding is at multiple security levels.  It maps in the same way as 
the above AAP/EPE. 

• A “Trusted Connection” exists between the NSE/EPE and each AAP/EPE.  It 
maps to the network connectivity and the pair-wise unique common cryptographic 
key between the NSE/EPE and each AAP/EPE.   

• The Access Control Table can be considered to be a matrix consisting of a list of 
all EPEs along both sides of the matrix.  The cells of the matrix define the rights 
(if any) for “A” to connect to “B”, and the policy enforcing key(s) that are to be 
utilized (XORed) in the generation of a session key.  The contents of the access 
control table can be based on any policy, such as DAC.  The initial content of the 
table is generated as part of mission planning and is securely loaded into the NSE 
at the start of a mission, but subsequent dynamic changes (by a trusted source) are 
supported by the model.  It maps to memory within the NSE.  Its implementation 
need not actually be an N x N matrix.   

• Simplex crypto connections exist between EPEs.  In most cases, there are two 
simplex connections between EPEs, one in each direction.  However, the formal 
model allows one-way connections, such as to support write-up.  They map to the 
network interconnectivity of the Region’s global bus, and the placement of a 
unique common key at both end-point EPEs.   

• The crypto algorithm per se is not specified in the model, but it is assumed to be 
adequate for the purpose, e.g., a Type 1 algorithm for DOD classified use. It maps 
to the hardware tile(s) upon which it operates. Key tables that are maintained in 
memory by the trusted EPE software also support it. It operates on the Region 
tile(s) that have hardware interconnections to both the cipher text bus and one or 
more of the plaintext busses.   

• Key management consists of key generation, key distribution, rekey, revoke, and 
zeroize capabilities.  There are special considerations for the support of coalition 
keying, including the distribution of the same keys to multiple parties (i.e., not 
just on a pair-wise basis. Key management maps to the NSE and EPE hardware, 
and the related key generation, key distribution, key usage, and key 
destruction/replacement.  

• The EPEs and the NSE collect audit data when pre-defined security-relevant 
events occur. This data maps to the hardware memory locations where it is stored 
in each EPE and the NSE(s).  At the end of the mission, this data would be written 
to a portable device where it would be collected and sent to a centralized site for 
analysis.    

• Secure boot/Initialization consists of coming up in a secure state and trusted 
distribution of security-relevant code and data. The trust issue is the assurance 
that the downloaded code and data have a high level of integrity and the source 
has been authenticated. It maps to the security of the hardware boot mechanism 
and the availability of a secret (private) key in non-volatile memory that can be 
used for cryptographic signature verification. 
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The PCA hardware is usually a set of resources over which the compiler has complete 
control. With MLS-PCA, the EPE crypto and processor/memory are exceptions to that 
rule.  Therefore, the SAPI and/or SAAL “view” of the PCA tiles would need to be 
restricted with regard to the EPE tiles.  There are a variety of hardware mapping issues 
that are more broadly based than the above direct mapping between the elements of the 
formal model and the hardware.  These are discussed in the remainder of this section. 
 
Tile and bus grouping and layouts: There should be a number of different types of tiles, 
including CPU tiles, memory tiles, and crypto tiles.  The crypto and EPE tiles are 
allocated to the two end tiles in an 8-tile Region.  They are at the edge of the chip, and the 
cipher text bus is connected to the global network. The remaining Region tiles consist of 
processor and 8 MB DRAM memory tiles for the AAP or NSE.  This Region needs to 
have at least one bus to interconnect the AAP (or NSE) processor and memory tiles, and 
also interconnects them to the plaintext side of the crypto tile.  A separate bus connects 
the cipher text side of the crypto tile to the global network.    
 
5.3.2 Required constraints to achieve MLS 
 
A fundamental constraint of the MLS-PCA architecture is that that there must not be any 
operational data flow that bypasses the crypto tile(s).  This does not preclude some 
morphed bypass that may be needed to initialize the system.  There must also be a 
mechanism that securely passes the plain text routing header on encrypted packets.   
 
A corollary constraint is that there cannot be any interconnect between 8-tile Regions 
except on the cipher text side. This is one of the most critical constraints on the 
morphing.  The “wires” that would otherwise exist at these points must be securely 
severed, which we accomplished by etching away any such potential interconnectivity. 
 
The shared busses must only convey cipher text and possibly unclassified information.  
This constraint is the one that is most “against the grain” of the PCA architectures.   
 
5.3.3 Specific mapping to Smart Memories and Raw PCA chips 
 
The following points summarize the specific issues that we found in attempting to map 
the formal model to the Raw and Smart Memories architectures. 
 

• Smart Memories supports four intra-quad busses. We need at least two; one for 
the plain text and the other for the cipher text and connection to the global 
network. As discussed earlier, we need for these busses to span an adjacent pair of 
quads. Raw does not provide any dedicated (non-multiplexed) busses within a 
Region (or any where else). 

• Smart Memories morphs the configuration (including the Region boundaries) by a 
set of registers that can be controlled by the support processor, or by a privileged 
on-chip processor. Raw has a “static network” which is pre-programmed by the 
compiler for register-level transfers anywhere on the chip.  Hence, this program 
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would have to be trusted to maintain the Region boundaries.  As indicated 
previously, “the static routers collectively reconfigure the entire communication 
pattern of the network on a cycle-by-cycle basis” [Taylor 03].  

• Neither chip provides non-volatile on-chip memory (e.g., for the public keys).  
• Smart Memories provides the option to use some tiles for DRAM.  Raw only 

supports off-chip DRAM. (This is partly due to the fact that IBM, who made their 
chip, did not have embedded DRAM in their Application Specific Integrated 
Circuit (ASIC) library.) 

• Neither currently supports the crypto tile(s).   
 
5.3.4 Assumptions 
 
We found it necessary to make the following assumptions about the future PCA chip 
capabilities to support the MLS-PCA Regions. 
  

• A DRAM memory tile can contain a total of 8 MB of instructions and/or data. 
• The 8-tile Region-defining configuration data can be “locked down” securely, but 

still allow the individual AAPs to morph their computing resources. 
• The EPE processor and 4 MB of instruction/data memory will fit on one tile. 
• We will be able to find some way to support at least a limited amount of non-

volatile memory, e.g., by including some anti-fuse capabilities on the chip. 
• Intra-Region dedicated busses will be available across the entire 8-tile Region.  
• A crypto tile (including an adequate random number generator) will be available.  
• Moore’s law will continue to apply. 

 
5.4 A Summary of Current PCA Limitations for MLS Avionics 
 
The following is a summary list of the changes that are needed in order to support MLS-
PCA.  
 

• Shared memory, memory management, and process scheduling disabled between 
Regions 

• Substantial increase in the amount of on-chip DRAM 
• Partitioning access to off-chip DRAM at differing security levels (if the on-chip 

amount is inadequate) 
• Provision of non-volatile on-chip memory to support initialization 
• Support for the crypto tile(s) 
• High assurance “nail down” of the Region boundaries (avoiding any inter-Region 

communications other than via the crypto modules) 
• More access to dedicated bus/network paths  
• Region-specific morphing 
• Concrete metadata restrictions prevent violating intra Region constraints, e.g., all 

external bus communications between Regions pass through the Region’s EPE 
first on input to, and last on output from an AAP  
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The above list of MLS constraints in applying the current PCA architectures to DOD 
avionics is not surprising given that we are applying PCA in a completely different way 
than was originally intended.  These are fixable matters. The “really good news” is that 
there are many positive points as well.    
 
First of all, the MLS-PCA approach once and for all solves the critical “MLS risk issue” 
that has plagued modern piloted air vehicle development, and will continue to be of 
concern with future uninhabited air vehicles (UAVs) and uninhabited combat air vehicles 
(UCAVs).  Another benefit will be the replacement of the bulky, power-hungry, on-board 
super computers that are in use today with a few PCA chips in future systems.   Size, 
weight, energy consumption, and such will become even more important than they are 
today.  One can expect that future avionic systems will continue to grow in both lines of 
code and the need for processing power for signal processing, information fusion, 
artificial intelligence, etc. This will be a challenge for future PCA-like developments, but 
PCA appears to be the best available solution to date.   
 
 
6 CONCLUSION 
 
With this final report, Northrop Grumman Corporation has successfully completed all 
tasks for which it was contracted. More importantly, it has achieved significant results in 
developing a MLS architecture, MLS-PCA, which is flexible enough to address the 
pressing security needs of DOD in its march forward to its network-centric vision of the 
2020 battle space. MLS-PCA is also scalable to very large distributed avionics 
applications that may execute on networks of 400,000 processors within future aircraft, 
UAVs, ships and ground systems.  
 
MLS-PCA was successfully designed, modeled, formally (i.e., mathematically) specified 
and validated by the MIT Alloy specification language and constraints checker.  The 
architecture is simple, which will enable high assurance application development in the 
future at a fraction of current Certification and Accreditation efforts. Furthermore, we 
have presented a number of ways that the PCA hardware and morphware need to be 
constrained in order to achieve a high level of assurance.  Given these constraints, MLS-
PCA has been shown to map to the new DARPA PCA chips, giving DARPA a path to 
security and performance with the new chip technology. 
 
Much has been accomplished, but much work remains to build MLS-PCA for the new 
DARPA PCA chips. Toward that end, Northrop Grumman Corporation has initiated a 
prototype implementation demonstration with its 2003 IR&D funds. The MLS-PCA 
demo will execute a distributed targeting algorithm set of AAPs operating on a Grid 
Computing network in Northrop Grumman Corporation  R&D lab. Grid Computing is the 
only way to simulate thousands of processors decades before the actual chips exist. The 
demo will simulate MLS data traffic over the grid protected by MLS-PCA. The prototype 
will be a proof-of-concept demo, and a vehicle to gather performance data.  DARPA can 
capitalize on this in subsequent follow-on developments.  The experience gained by 



41 

implementing the prototype will be used to guide the next round of implementation of 
MLS-PCA on real PCA chips. 
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9 ACRONYMS 
 
AA  Alloy Analyzer 
AAP  Avionics Application Process 
ACL2  A Computational Logic for Applicative Common Lisp 
AES  Advanced Encryption Standard 
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AIM   Advanced INFOSEC Machine 
ASCII  American Standard Code for Information Interchange 
ASIC  Application Specific Integrated Circuit 
BLP  Bell-LaPadula 
C&A  Certification and Accreditation  
CC  Common Criteria 
CISC  Complex Instruction Set Computer 
COTS  Commercial Off the Shelf 
CPU  Central Processing Unit 
DAC  Discretionary Access Control 
DARPA Defense Advanced Research Projects Agency 
DDN  Defense Data Network 
DES  Data Encryption Standard 
DOD  Department of Defense 
DRAM Dynamic Random Access Memory 
DSP  Digital Signal Processor 
EPE  Encryption Processing Element 
FPGA  Field Programmable Gate Array 
GPS  Global Positioning System 
I&A  Identification and Authentication 
IBM  International Business Machines 
IPC  Inter-Process Communications 
IR  InfraRed 
IRAD  Independent Research and Development 
JIAWG Joint Integrated Avionics Working Group 
JV2020 Joint Vision 2020 
LAN  Local Area Network 
MAC  Message Authentication (Integrity) Check, and also  

Mandatory Access Control  
MD5   Message Digest 5 (a hash algorithm) 
MIPS  MIPS Technologies Company 
MIT  Massachusetts Institute of Technology 
MLS  Multi-Level Security 
MPC  Mission Planning Center  
NSE  Network Security Element 
NSTISSC National Security Telecommunications and Information Systems Security 
                        Committee 
OS  Operating System 
PCA   Polymorphous Computing Architectures 
pid  process identifier 
PK  Partitioning Kernel  
PKI  Public Key Infrastructure 
PKPP  Partitioning Kernel Protection Profile  
PMD  Portable Memory Device 
PVS  Prototype Verification System 
R&D  Research and Development 
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RISC  Reduced Instruction Set Computer 
SAAL  Stable Architecture Abstraction Layer 
SAPI   Stable Application Programming Interface 
SLOC  Source Lines of Code  
SoC  System on a Chip 
SRAM  Static Random Access Memory 
SSO  System Security Officer 
TC  Trusted Connection 
TCB  Trusted Computing Base 
TCPA  Trusted Computing Platform Alliance 
TCP/IP Transmission Control Protocol / Internet Protocol 
TCSEC Trusted Computer System Evaluation Criteria  
TS-SAR Top Secret – Special Access Required  
UACV  Uninhabited Combat Air Vehicle 
UAV  Uninhabited Air Vehicle 
uid  user identifier 
UML  Unified Modeling Language 
VDM  Vienna Development Method 
VPN  Virtual Private Network 
XOM  eXecute Only Memory 
 
 




